
Anirudh Sivaraman - Research Statement
Computer networks have revolutionized society by commodifying connectivity between disparate

locations. Going beyond connectivity, I see ubiquitous network programmability as networking’s next
frontier: enabling programmatic transformations of data while it is in transit between two locations.
Peering into the future, the network as a programmable platform has radical consequences: Net-
work infrastructure can evolve much faster than it historically has, freeing it from slow protocol
standardization and hardware upgrade cycles. Networked applications can compute on application
data within the network as soon as such data is first available—enhancing applications on several
dimensions (e.g., fairness [11], CPU overhead [10], and request latency [24, 23]).

In my work, I approach network programmability through two opposing lenses [26]: (1) the
network core, which interconnects servers and (2) the network edge, which provides network access
to applications. A programmable core allows us to rapidly modify high-speed network infrastructure
like switches and routers, which have historically suffered a hard tradeoff between flexibility and per-
formance. A programmable edge provides application developers with a “do-it-yourself” approach
to network programmability—especially cloud tenants who can not access the network core.

A running theme through my research is what I call smart waypoints: small pieces of code that
intercept and programmatically transform data in transit between two points. Such waypoints are em-
bedded within communication infrastructure at all layers. They allow customization of complex and
entrenched pieces of hardware and software that have traditionally been hard to modify. Examples
from my research include P4 programmable routers [25, 8, 27], smart network-interface cards [17], the
host network stack [18], software sandboxes embedded in network stacks [31] and Web proxies [4],
and VMs interposing between other VMs [11, 10].

My research style is to identify foundational and forward-looking questions within the broader
vision of programmable networks. These questions span the entire stack: hardware, operating sys-
tems, compilers, and networked applications. To find the best answers, I often collaborate with
experts in allied research areas including computer architecture, compilers, program synthesis, for-
mal methods, language design, and distributed systems. For realistic evaluations, I build hardware
and software systems with a substantial engineering component to validate research ideas.

To ensure relevance and impact, I have open sourced code for most of my research projects,
allowing others to replicate and build on my work. I have also worked closely with both the open-
source community and startup companies (Barefoot Networks and Clockwork). This has resulted
in several contributions to the P4 programming language and broader open-source adoption of the
Mahimahi network emulator, the Gauntlet compiler bug-finding tool, the P4Testgen test oracle, the
In-Band Network Telemetry standard, and the DC.p4 (now switch.p4) program. It has also resulted
in considerable interest from industry in a few of my projects like the On-Ramp congestion control
algorithm [18, 2], the Nezha consensus protocol [10], the CloudEx stock exchange [11], and the PIFO
programmable scheduler [27]. I also co-chaired the P4 Summit in 2020, co-organized a well-attended
NSF workshop on programmable networks in 2018, co-organized a tutorial on networking for finance
at SIGCOMM 2020, and am a member of the Network Programming Initiative.

Looking to the future of computer networks, I believe networks will continue to evolve as they
have in the past, e.g., from physical network interface cards (NICs) to their virtual counterparts,
or from such virtual NICs to container network interfaces. As a networking researcher, I plan to
embrace this change by meeting application developers where they are and continuously revisiting
fundamental notions of what a network is and who it serves. For me, this has meant continuously seeking
out new ways to make the network invaluable, e.g., moving from fixed to programmable network
devices and enabling network programmability for cloud tenants. In the same vein, going forward,
to ensure the vitality of networking, I plan to draw inspiration from emerging application domains
(e.g., networking for microservices, networking for virtual reality, inter-drone communication, and
edge computing offerings) to identify how network flexibility can deliver new value to users and
developers.



programming the network edge
In many environments—most notably environments cloud tenants find themselves in—the developer
of a networked application has no control over the network core and can’t program the core to do
their bidding. To this end, I have pursued a research agenda of programmability at the network’s edge:
an application’s point of attachment to the network. My goal is to empower cloud developers to take
matters into their own hands and enhance their networked applications by strategically offloading
some application logic to programmable waypoints.
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Figure 1: Nezha, which leverages our new deadline-
ordered multicast (DOM) primitive, outper-
forms Multi-Paxos, Fast Paxos, and NOPaxos.

Network primitives for distributed systems.
Distributed systems traditionally assumed noth-
ing more of the network than best-effort packet
delivery. In contrast, recent work [16, 20] has
demonstrated how certain network features can
accelerate distributed consensus. This work
leverages network core features to sequence,
multicast, and prioritize packets. Because such
features are unavailable to cloud tenants, cloud
tenants typically use lower performance consen-
sus protocols instead. To remedy this, we have
developed a new network primitive, deadline-
ordered multicast (DOM), to help build high-
performance and cloud-native distributed systems. In DOM, senders and receivers within a multicast
group have synchronized clocks. A sender tags a message with a global time deadline and sends it
to all receivers. A receiver only processes a message on or after the message’s deadline is reached
and processes multiple messages in order of their deadlines. DOM’s heavy lifting of unicasting to
multiple receivers in the absence of switch multicast is handled by a proxy running inside a VM
waypoint that interposes between clients and servers—reducing clients’ CPU overhead in the process.
We have used DOM to build Nezha [10], a crash-fault-tolerant consensus protocol (Figure 1). We are
using DOM to design new protocols for concurrency control and Byzantine Fault Tolerance. We are
also designing an autoscaling cloud service for DOM and a “bolt-on” DOM layer within an eBPF
waypoint to transparently accelerate existing distributed protocols.
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Figure 2: CloudEx uses a perimeter of synchronized
gateways (1) to hold and simultaneously re-
lease market data (H/R buffer) and (2) to
timestamp incoming orders.

Cloud-native stock exchanges. Financial ex-
changes have begun migrating from on-premise
and custom-engineered datacenters to the cloud,
accelerated by a rush of new investors, cost sav-
ings from the cloud, and the desire for more re-
silient infrastructure. Despite its scale and elas-
ticity benefits, the cloud’s variable network can
cause market unfairness: orders can be processed
out of sequence, and market data can be dissem-
inated to market participants at different times
due to varying latencies between participants
and the exchange. We have built CloudEx [11],
a fair-access cloud exchange, which uses clock
synchronization to compensate for the cloud’s
noisy network conditions. CloudEx uses a perimeter of trusted gateway VM waypoints that are
clock synchronized to a matching engine VM. These gateways both timestamp incoming orders from
untrusted participants (for execution at the engine in timestamp order) and hold outgoing market
data (for simultaneous release at a time specified by the matching engine) (Figure 2). We have de-



ployed and evaluated CloudEx in two courses and CloudEx has already seen follow-on work in the
networking community [13, 14]. We are now adding fault tolerance to CloudEx via Nezha [10].

Optimizing packet-processing bytecode. Software sandboxes provide a safe way to extend stable
software like browsers or OS kernels. A notable example is the eBPF waypoint for packet processing
in Linux. An eBPF compiler has the challenging task of generating eBPF bytecode that is (1) safe
(e.g., it must not access invalid memory) (2) compact (so that the kernel can check its safety quickly)
and (3) performant (so that it doesn’t impact throughput and latency). We built K2 [31], an eBPF
compiler that employs stochastic superoptimization to search for such bytecode: K2 randomly samples
bytecode sequences based on a cost model and then checks equivalence of these sequences to a
specification eBPF bytecode using an SMT solver. K2 often outperforms eBPF’s clang compiler at
the O2 optimization level. We believe this approach could be valuable for bytecode formats running
within other programmable waypoints, such as WebAssembly inside Web proxies [4].

Autoscaling and scheduling latency-sensitive networked applications. The cloud is increasingly
home to latency-sensitive applications such as microservices. We have applied optimization tech-
niques to improve the cost-performance of such applications in the public cloud. These optimiza-
tion techniques take as input telemetry collected by waypoints (e.g., one-way delay or throughput
measurements between pairs of VMs) and use this telemetry to select, schedule, and provision
VMs. COLA [24] uses a multi-armed bandit formulation to reduce queueing latency due to under-
provisioned microservices. It does this by automatically provisioning enough VMs for each microser-
vice with the goal of meeting a desired end-to-end latency target for a Web application that has
multiple microservices. LemonDrop [23] uses a quadratic assignment problem formulation to reduce
communication latency between different components of an application by requesting several VMs
of the same VM type from the cloud provider, selecting a subset of these VMs based on their ob-
served performance, and mapping application components onto this subset. By dropping underper-
forming VMs (lemons) from the initially requested VMs, we find that LemonDrop can substantially
improve performance for networked applications, e.g., CloudEx, Nezha, and microservice-based ap-
plications [12]. We believe these techniques can be applied to other latency-sensitive use cases such
as game engines and low-latency ad marketplaces.

Congestion control. Many datacenter congestion control algorithms need network core assistance
(e.g., routers marking packets), putting these algorithms beyond the reach of cloud tenants. On-
Ramp [18] is an approach to congestion control implemented solely in the Linux kernel’s qdisc way-
point, and hence can be deployed with no network core support. On-Ramp can also be implemented
in eBPF waypoints for safe kernel extensibility—or within a programmable NIC waypoint to save
scarce end-host CPU cycles and improve On-Ramp’s performance. On-Ramp is an underlay module
that sits below and transparently improves an existing congestion-control algorithm in the end host
by improving the algorithm’s response to severe fan-in workloads. It works by holding packets at
the sender whenever the one-way delay to a receiver exceeds a threshold—like how an onramp gates
access to a busy freeway.

programming the network core
Traditionally, packet-switched networks emphasized an architecture with smart end hosts and a min-
imal core infrastructure: routers focused solely on distributed routing protocols and packet forward-
ing. Over time, routers have taken on an ever-changing list of requirements including access control,
load balancing, packet scheduling, and measurement. To address these important needs, router flex-
ibility has become as important as performance. However, despite efforts in the 1990s and 2000s,
programmable routers remained 10–100x slower than fixed-function routers, precluding their use in



production. Motivated by this, I have developed hardware designs for fast and programmable routers
along with their associated system software.

Hardware designs for packet processing. As part of my dissertation, which won the SIGCOMM
2017 Doctoral Dissertation Award, I developed new router hardware designs to walk the tightrope
between programmability and performance. The unifying theme in these designs was a focus on
restricted, but important, classes of router functionality—providing programmability without losing
performance. For instance, scheduling was thought to be too hard to program at line rate because
the scheduler sits at the heart of a switch where digital design is most challenging. PIFO [27] was
a new hardware design for a programmable packet scheduler based on a simple priority queue
with programmable packet priorities. The PIFO project has seen significant follow-on work in the
networking research community. Domino [25] developed an instruction set, programming model,
and compiler for stateful packet-processing algorithms, significantly advancing over prior work that
had considered largely stateless packet processing [5]. Marple [19] (best paper at SIGCOMM 2017)
mathematically characterized and developed hardware designs for a family of measurement statistics
that sidestepped the memory-accuracy tradeoff present in many solutions based on measurement
sketches. I have also contributed to new hardware architectures for programmable switches [6] and
network-interface cards [17].

Bug Type Status P4C BMv2 Tofino

Crash
Filed 36 4 35

Confirmed 33 4 25

Fixed 27 4 8

Semantic
Filed 31 1 10

Confirmed 26 1 7

Fixed 22 1 0

Total 96 59 5 32

Table 1: Gauntlet found numerous P4 compiler bugs us-
ing fuzz testing and translation validation.

Solver-aided compilers. Programming routers
today is rudimentary and akin to programming
microprocessors in the 1970s or GPUs in the
2000s—before productive languages and good
compilers were developed. On the bright side,
unlike at the dawn of compiler research, we
now have at our disposal high-quality solver en-
gines for many optimization and satisfiability
problems (e.g., program synthesis engines, SMT
solvers, ILP solvers). Many of my recent projects
have made use of such solvers to pose compiler
problems declaratively as optimization or con-
straint satisfaction problems. Our thesis [7] is
that such an approach has the potential to both (1) simplify compiler development by using solvers
to do a compiler’s algorithmic heavy lifting (e.g., code generation, resource allocation) and (2) im-
prove the quality of the compiler’s output via exhaustive search, which is critical for network devices
that must provide high performance. Next, I illustrate research results from this approach.

A traditional compiler iteratively transforms a program using code rewrite rules to progressively
generate machine code. In contrast, Chipmunk [7, 8] and CaT [9] show the benefits of treating code
generation declaratively as a program synthesis problem: the compiler intelligently searches over a
large combinatorial space of machine code programs to find machine code that is equivalent to the
source program. Gauntlet [22] is a tool to find crash and miscompilation bugs in P4 compilers. To
detect crash bugs, Gauntlet uses fuzz testing. To detect miscompilation bugs, Gauntlet revives a clas-
sical compiler technique called translation validation: using an SMT solver to prove that the compiler
correctly translated a program. An inability to prove indicates a miscompilation. Gauntlet found
numerous new and confirmed bugs in the open-source P4C reference compiler frontend and the P4

behavioral model and Tofino backends (Table 1) and now runs as part of P4C’s continuous integration
pipeline. Gauntlet’s semantics have also been used as a reference for subsequent research [28]. We
have also collaborated with Intel on an open-source test oracle [3, 21] for P4, P4Testgen, which builds
on ideas from Gauntlet. P4Testgen now has several external users.

Multitenancy mechanisms. Network programmability would be of very limited value if only the
network’s owners were able to program their devices. Ideally anyone writing an application running



over a network—even one they don’t own—should be able to program the network. To that end, we
envision a future where cloud providers offer programmable packet processing as a service to tenants.
To support this, we need mechanisms to run multiple tenant programs on a network device. Sharing
is typically handled by the OS, but programmable routers lack the hardware support for an OS. In
a series of papers [30, 32, 29], we designed compile-time approaches and hardware support for such
sharing. One of these projects, Menshen [29], has been used by subsequent research projects [15].

the future: a hardware rpc processor for microservices
Going forward, I plan to tackle a multi-year moonshot with network programmability at its core: a
high-performance microservices platform, centred around a programmable RPC processor in hardware. I envi-
sion a research center where we tackle the full stack of problems associated with fabricating such a
processor and demonstrating the value of such a platform. Executing on this will involve expertise
from multiple faculty and industry partners spanning open-source VLSI design [1], computer archi-
tecture, compilers, networking, distributed systems, programming languages, and applications—and
will likely produce multiple dissertations of considerable intellectual depth. I expand below.

Web services have increasingly been factored into a loose collection of microservices, which
communicate with each other using RPCs. Over time, common portions of inter-microservice com-
munication have been factored out into waypoints called service proxies, which interpose on inter-
microservice traffic and provide common functionality such as security and load balancing. Recent
service proxies are extensible, allowing us to add functionality via WebAssembly bytecode; we have
prototyped a new approach to distributed tracing through such extensions [4]. While programmable
service proxies represent an exciting opportunity, they significantly increase RPC latency and con-
sume additional CPU cycles [33].

Our goal is to eliminate these overheads by moving the service proxy to a specialized in-line
hardware waypoint: the RPC processor. In initial studies, we have found that designing such an
RPC processor requires not just designing equivalent hardware for proxy functionality that is cur-
rently in software, but rather fundamentally rethinking a proxy’s abstractions to make them more
hardware-offload friendly, e.g., using message-oriented transport instead of reliable bytestreams, and
simplifying header formats to make them amenable to high-speed hardware parsing.

Our end-to-end vision is a platform where each microservice can be pinned to one or more CPU
cores. A core communicates with other cores either on the same or a different machine by passing
data to a low-latency RPC interface (e.g., by writing to a special CPU register). The cores are responsi-
ble only for sending and receiving RPCs. The programmable RPC processor handles all other aspects
of communication in hardware: serialization, compression, encryption, congestion control, authoriza-
tion, authentication, load balancing, and reliable data delivery. Additionally, the RPC processor will
enforce isolation between the processing of RPCs belonging to different microservices—important in
multi-tenant environments—and leave just the right number of programmable knobs for application-
specific customization of in-line RPC processing.

Such a processor could form the basis of a platform for high-performance distributed comput-
ing in the broadest sense—providing underlying technology support for diverse use cases such as
microservices, actor-based programming models, programming models based on communicating se-
quential processes, and frameworks like MPI.

***

Computer networks have transformed society by turning connectivity between disparate locations
into a commodity. My long-term goal is to similarly make network flexibility a commodity—so that
programmability is the norm, rather than a research curiosity.
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