
NSF Workshop Report on Programmable

Networks

Organizers:
Anirudh Sivaraman, Xin Jin,

Vladimir Braverman, and Mohammad Alizadeh

October 1, 2019

1 Introduction

Programmable networks have emerged to fundamentally change the way we
design, build, and manage computer networks. Programmable networks have
been a goal for networking researchers for a long time now, and many believe
that the time has finally come true with programmable network devices (e.g.,
network interface cards and switches) released by vendors and new advanced
network applications developed by researchers and network operators. Due to
the requirement of providing line-rate packet processing, programmable net-
work devices have a limited amount of high-speed memory and perform a small
amount of computation on every packet. It is a grand challenge for the commu-
nity to rethink the full software stack of programmable networks, from exploit-
ing sublinear algorithms and compact data structures to efficiently realize net-
work applications with limited resources, to developing high-level programming
frameworks to simplify application development and management, to design-
ing new hardware architectures to enable programmability. This requires the
effort of multiple research communities: networking, algorithms, programming
languages, and computer architecture.

The NSF workshop on programmable networks brought together these dif-
ferent research communities to survey the state of the art in programmable
networks, to identify key research challenges, and to exchange ideas. Our pri-
mary goal was to stimulate discussion between different communities engaged
in research on programmable networks and to broaden the research community
working on programmable networks. This report summarizes the workshop’s
discussions and is organized by the major themes discussed at the workshop.

Workshop format. The workshop was held in the Computer Science De-
partment of New York University. The participants included a mixture of se-
nior graduate students, postdocs, junior and senior faculty members, industry

1



and defense experts on computer networks, and NSF program managers. The
workshop included

1. keynotes from distinguished researchers,

2. breakout sessions between participants discussing emerging research chal-
lenges in programmable networks,

3. a panel discussion between academia, industry, and government,

4. and a poster session featuring early-stage research in programmable net-
works

The workshop was held on October 25 and 26 2018 at New York University for
a day and a half. The workshop website with more information is available here:
https://sites.google.com/view/programmable-networks-workshop/

Report format. This report is broadly organized by the four main themes
in the workshop, each of which had a breakout session devoted to it

1. applications and use cases

2. algorithms and formal methods

3. programming language and hardware design

4. testbeds, infrastructure, and education support

We also include insights from the keynotes when discussing each of the themes.

2 Applications and use cases

We now discuss applications and use cases that arise from ubiquitous pro-
grammability in networks. We discuss opportunities in the context of three
different sets of industry actors that could potentially benefit from network pro-
grammability: network operators (e.g., Microsoft, Google, Facebook, AT&T),
network equipment manufacturers (e.g., Arista, Dell), and chip vendors (e.g.,
Broadcom, Barefoot Networks, Mellanox).

2.1 The network operator’s perspective

Network telemetry Troubleshooting outages and performance anomalies re-
mains problematic today despite continued research in these areas. Network
programmability provides operators with the ability to instrument different
network locations to track what is happening to a packet during the course
of its lifetime from leaving the sender to being received at the receiver. For in-
stance, the In-Band Network Telemetry specification [5] allows switches to add
queueing-related information to packet headers (e.g., queue depths at enqueue
and dequeue and queueing latencies) that can then be read at the end hosts.

2

https://sites.google.com/view/programmable-networks-workshop/


This allows us to retrieve rich time series data of queueing behavior at differ-
ent points in the network, which can then be analyzed for anomalous behavior.
Beyond this, network telemetry provides the ability to use network programma-
bility passively to observe packets, without the risk of actively modifying packets
incorrectly. In this sense, it provides network operators with an easier pathway
to migrate towards the full use of programmability in networks.

Traffic Engineering Data-plane load balancing and traffic engineering algo-
rithms (e.g., CONGA [6] and HULA [15]) allow switches to dynamically react
to changes in network conditions (e.g., link utilization fluctuations to new flows
arriving and departing) at much faster time scales relative to invoking the con-
trol plane. The use of programmable switches can enable the deployment of
such traffic engineering algorithms, with the potential for relieving hotspots in
the network.

Application-specific routing Programmable networks, whether switches or
network-interface cards, can be used to enable application-specific routing. For
instance, video traffic could be routed over a preferred route relative to bulk
data transfers. Similarly, in the context of a datacenter, packets belonging
to latency-sensitive user-facing Web requests can be routed over more lightly
loaded paths relative to packets from background data backup jobs. Similarly,
packets belonging to an application that is less tolerant to jitter can be routed
over a more trustworthy, low-variability path.

Application-specific scheduling Programmable scheduling within networks
can allow network operators to prioritize data belonging to particular applica-
tion classes when apportioning scarce network bandwidth. Further, after divid-
ing applications into classes (based on either strict priorities or weighted fair
queueing), a class-specific scheduling algorithm could be used within each class
(e.g., FIFO for reducing tail latency, SRPT for reducing job completion time).
Recent work on programmable scheduling designs (e.g., PIFO [23], Eiffel [18],
and Loom [24]) has shown that it might be feasible to enable programmable
scheduling at high packet-processing rates.

Network security A programmable network device can be used as a means
of implementing monitors to detect anomalous patterns of network traffic (e.g.,
the Threshold Random Walk algorithm for portscan detection [13]). After de-
tection, the same device can be used for enforcement to filter out relevant traf-
fic by installing appropriate rules to drop traffic. While such network security
functions are implemented on software platforms as part of the move to net-
work function virtualization (NFV) [21], the rise of network programmability
allows us to augment traditional NFV-based security with monitors and filters
spread out through the network on programmable switches and programmable
network-interface cards. It could also allow us to replace a cluster of commodity
processors programmed to carry out NFV functionality with a smaller number

3



of programmable network devices for the same functionality, potentially saving
money and energy in the process.

Network-assisted applications Programmability within networks can be
used to accelerate distributed machine learning training by using the switch to
aggregate model updates from several distributed workers [19]. A programmable
switch can also serve as a load-balancing cache (e.g., NetCache [12]) to re-
duce the incidence of hotspots among backend servers. In other work, a pro-
grammable switch is used to build a lock service in the style of ZooKeeper [11],
for fast string matching [9], or for high-speed stream processing [10]. A pro-
grammable switch could also be used to potentially filter and aggregate high-
volume streams of sensor data before they hit backend servers. These systems
point to the possibilities of using a programmable switch to directly speed up
end-to-end applications—as an add-on I/O accelerator for servers.

Other applications In areas, where low latency is paramount, a programmable
network device can be used to directly respond to market data and execute data.
As one example, the Arista 7124 FX features an on-board FPGA to offload such
applications for the express purpose of high-speed algorithmic trading. Recent
work has also looked at programmable networks as a means of implementing
consistent snapshots across the whole network [25] and for accurate time syn-
chronization [14].

2.2 The equipment manufacturer and chip vendor per-
spective

Programmable switches have the potential to significantly reduce turnaround
time for equipment manufacturers (e.g., Arista, Cisco) who build systems/boxes
around merchant silicion switching chips. In such cases, the equipment manu-
facturers can respond to customer requests faster, fix bugs faster, and customize
the same programmable switching chips to different market segments by simply
changing the data plane program on these switching chips [2]. In addition, a
programmable switching chip allows an equipment manufacturer to customize
their switching chip to a particular use case and leave out everything else (e.g.,
use all memory on a switch for MAC forwarding or IPv4 lookups).

On the flip side, getting used to writing the data plane program in addition
to control plane software for a programmable switch requires additional work
from the equipment vendor. Some of this is a one-time cost and will likely be
amortized in steady state. However, even in steady state, with a programmable
switching chip, there are now two maintenance costs: (1) the data plane program
(say in P4) describing the switch’s functionality and (2) the usual control plane
software for the switch CPU to interact with the data plane program. In return,
however, there is a smaller time to market for many features—provided the
feature can indeed be supported by the programmable switching chip.

4



From the chip vendor’s (e.g., Broadcom, Mellanox, Barefoot, Intel) perspec-
tive, a programmable switching chip can help simplify hardware design. The
chip vendor can worry less about whether every one of thousand features has
been provided for. Instead, if the chip were programmable, the chip vendor can
concentrate on designing and realizing in silicon a handful of highly reusable
primitives (e.g., a match-action table, action units, a programmable scheduler,
and a programmable parser) that can be repeated over the area of the chip.
This has the potential to reduce labor costs in hardware design in steady state.

Programmable switching chips might also provide a way to experiment with
features without committing to them, for chip vendors, equipment manufactur-
ers and network operators. Later, once more experience has been gained with
using these experimental features, a later generation of a switching chip could
harden the features in silicon, instead of making it programmable.

At the beginning however, the hardware design effort is probably increased
by the fact that the designer needs to design generic and programmable ele-
ments that need to be reusable for many as-yet-unknown needs in the future.
Additionally, in steady state, a programmable switching chip might incur more
labor cost in place and route or physical design. This is because programma-
bility results in an increased number of wires because inputs to computational
units can come from more sources. These new wires need to be routed in sil-
icon, placing an increased burden in the place-and-route/physical design stage
of hardware design.

In summary, programmable switches have the potential for significant ben-
efits for both equipment vendors and chip manufacturers. Unlike the network
operator use cases, however, these benefits have nothing to do with performance,
reliability, or better monitoring. On the other hand, these benefits have much
more to do with simplifying the engineering of a product whose feature set con-
tinuously changes with time. At some level, these engineering benefits have
little to do with switches in specific. Many other domains have gone the way of
programmability (e.g., GPUs, DSPs, smart phones are all programmable) for
similar engineering reasons that allow system implementors and app developers
to iterate quickly. Programmable switches and NICs bring the same kind of
engineering benefits to high-speed networking.

3 Challenges

We now discuss challenges that must be resolved to effectively realize the op-
portunities in the previous section. First, in a network setting, both in a public
and a private cloud, a programmable device needs to be shared across multiple
different tenants. However, this poses both mechanism and policy challenges.
On the mechanism front, programmable switches lack support for running mul-
tiple tenant programs on the switch simultaneously. On the policy front, even if
the mechanism did exist, it is unclear how to split up multiple resources across
different tenants in a manner that’s fair to each tenant, but still allows the
tenant to use the network effectively for their own needs. The policy problem

5



gets more complicated as we pool together the different resources (e.g., memory,
ALUs) of multiple distinct programmable switches and present them all to the
tenants as a single resource pool.

Modularity is another area where much more work needs to be done. For
instance, we could imagine a program where a chip vendor sells a programmable
switching chip to an equipment vendor. The equipment vendor customizes the
chip according to their understanding of their customers’ needs, say using a P4
program. Then the customer should also be free to modify the chip in some
restricted ways according to their own needs. This scenario isn’t atypial; the
Amazon FPGA-as-a-service F1 offering [1] has a similar flavor. Amazon offers
Xilinx’s FPGAs as a service, with an Amazon shell written in Verilog providing
a scaffolding around the F1’s customer’s own Verilog code. However, neither
the programmable switch hardware nor the programming languages support
this kind of modularity that allows customers to compose their P4 programs
with a baseline P4 program provided by their equipment vendor [4].

Both the modularity and the multi-tenant scenario concerns are significantly
alleviated in the case of programmable NICs because they feature a more fa-
miliar hardware architecture centered around processors. A processor-centric
architecture makes it easier to support both modularity and multi tenancy.

The programming model for many of these devices is non standard and is
likely to pose its own challenges. For instance, in a high-speed programmable
switch, programs either compile and can run at up to the full line or programs do
not compile at all. This is in contrast to a substrate like a CPU or GPU where
a program can run at reduced performance in exchange for doing more work
per packet. Switches don’t allow this graceful tradeoff between performance
and expressiveness. This leads to unintuitive behavior where a certain program
compiles, but minor modifications to it do not compile. Providing guidance to
the data-plane programmer under such circumstances will ease the transition to
programmable network infrastructure. In addition, developing hardware archi-
tectures that allow a smoother tradeoff between performance and programma-
bility (e.g., dRMT [8]) would also alleviate some of this concern of “falling off
a cliff” once a program’s complexity exceeds some threshold.

The presence of encryption poses challenges to packet processing that in-
spects payloads, e.g., deep packet inspection. It is possible that approximate
inference using the packet’s headers can make up for the lack of access to the
packet payload [20], but this is far from a perfect solution. Further, if the proxy
operations on the packet’s headers turn out to be more involved than the orig-
inal operations on the packet’s payload, the tradeoff may not be worth it after
all. Approaches based on specialized forms of fully homomorphic encryption [22]
hold promise, but they currently slow down packet processing significantly for
the benefit of being able to work directly on encrypted data.

Programmable network devices can also be challenging from a security per-
spective. They open up the possibility that the data-plane program running on
the switch or NIC can be exploited by crafting specific packets. For instance, in
a system like Marple [17] that proposes an in-switch key-value store as a cache
for a backing store, an attacker could easily craft an adversarial traffic pattern

6



that causes repeated cache misses and an increased load on the backing store.
If the backing store is not equipped to handle this increased load, it could easily
be overwhelmed and become a point of failure.

A programmable network also introduces new management concerns be-
cause, in addition to the control plane software, the network operator now has
to maintain the data plane program as well. This requires an additional code
base, additional tests, additional qualification before release, and the potential
for more bugs. One way to alleviate these concerns is to deploy programmable
network devices in specific clusters alone or to use them initially for passive
functionality alone (e.g., measurement) that doesn’t modify the packet head-
ers.

4 Algorithms and formal methods

4.1 Sublineaar algorithms and sketches

The gap between P4 and real hardware models. The open-source P4
behavioral model and the real hardware models are different. Sometimes the
gap can be substantial. For example, the Barefoot Tofino switch, an example
of a real hardware model, has the following hardware limitations that are not
captured by the behavioral model.

• It has limited processing stages.

• It has limited per stage stateful memory.

• For algorithms, the number of per-packet operations should be constant
and involve a constant number of memory accesses.

• There is no shared memory. One possible design is that P4 switches
allow shared memory, for instance, by letting multiple pipeline stages share
memory. But precisely defining and then achieving consistency on such
shared memory is challenging.

• It is hard to reprogram the table rules from the data-plane.

• There are also memory bandwidth limitations on hardware.

As a concrete example, it is infeasible to store the flow keys on the data
plane. For instance, in some cases, we might need to keep the top K flow keys
on the data plane. To achieve this, we might need some priority queue data
structures on hardware. But these data structures cannot be supported by
current hardware chips. Priority queues need varying (non-constant) number of
operations for each packet and need log(K) operations in the worst case, where
K is the size of the priority queue. There may be some approximate priority
queue structures that can be supported on hardware, but the number of entries
has to be small. Current method reports the keys to the control plane and may
not be ideal in some applications.

7



Some of these limitations may not be fundamental, and it is possible they
might be addressed in future generations of programmable switch hardware.
Demands from algorithms can push hardware design changes, and hardware
design can push the implementation of algorithms.

New hardware and software models. New hardware models can inspire
new algorithm designs and new applications. One recent example is that P4
switches can use RDMA to access DRAM as external memory, where the switch
acts as a cache [16]. DRAM memory cannot be directly built into switches
because DRAM cannot support line rate. Yet, the switch hardware design
can be changed if line rate is not required. Combining switches with external
hardware can be a direction for other applications.

There are also opportunities in new models for software switches. Sublinear
algorithms can be used to optimize software switches. During the workshop, we
discussed whether memory-saving is still relevant in software switches and how
to optimize per-packet operations.

Use cases of algorithms. One example is correctness monitoring, which is
about how to verify the correctness of a protocol based on the history of the
packets sent and received by it. For example, in the FTP protocol, one can
verify whether the ports activated by users are correct. To achieve this, Bloom
filter and its variants like counting Bloom filter can be good candidates. But
we need to handle membership deletions in these use cases. Many sketching
techniques can not only support insertions, but also deletions. We possibly can
adopt such sketching techniques for correctness monitoring.

In the sliding window stream processing model, the algorithms are more
complicated with more number of operations. It is difficult to support them in
programmable data planes.

In the distributed setting of multiple switches, there are new types of mea-
surement tasks, e.g., most frequent flows on the critical path and traffic statistics
between multiple paths. New sketching tools can be used. For example, “merge-
able sketching” techniques provide sketch data structures that can be collected
from a distributed setting and be accurately merged. For network monitor-
ing and measurement, splitting the measurement tasks between end-hosts and
switches is a potential option. For flow-level statistics, switches can be a good
place to monitor. For event-based triggering, end-hosts can accurately capture
them.

Algorithmic challenges There are many algorithmic challenges, such as sup-
porting more complex tasks and measurements on multiple dimensions. Finding
hierarchical heavy hitters on multiple dimensions is a hard problem. But the
workshop participants agreed that we still needed to figure out real use cases
for primitives such as hierarchical heavy hitters. TCAM usage on switches can
inspire new algorithmic designs. TCAM can provide fast wildcard matching,
and algorithm designs can make use of it for further acceleration.

8



4.2 Algorithms for dynamic networks

Algorithms in programmable networks We discussed the set of algo-
rithms that are impacted the most in programmable networks (dynamic net-
works). Scheduling and load balancing are the most relevant applications. In
addition to network sharing, resource sharing within switches is important in the
context of programmable switches. We discussed the right level of abstraction
for performance-related algorithms. For an algorithmic perspective, stateful
processing (e.g., registers) is key. If you remove stateful processing, it is not
clear if a programmable switch is any different from a traditional one. Pro-
grammable networks allow functions to be distributed across switches in a more
fine-grained way. Programmable switches can simulate a Turing machine if we
do not consider performance. Instead of restricting algorithms based on hard-
ware constraints, we discussed that perhaps algorithms should drive hardware
design.

Engaging the algorithm community The algorithm community likes for-
mal clean problems. To engage them, the networking community should for-
malize when an algorithm can actually run in a programmable network in an
abstract model. Organizing tutorials on network algorithms is an effective way
to bridge the gap between the algorithm and networking communities.

New algorithmic frameworks We discuss the question of whether pro-
grammable networks can lead to new algorithmic frameworks. In traditional
algorithms, memory and time are expensive, but accessing memory is no differ-
ent than time. Programmable networks have a different computational model.
It is not just about space and time, but also about the memory access constraints
and number of operations (e.g., whether the switch can update the state once
per packet). In programmable networks, streaming algorithms are triggered by
packets. For online algorithms with recourse, it sometimes requires to set the
state not once but twice. Oblivious routing routes traffic without knowing traf-
fic demands. With the capability of programmable networks, it is possible to
define a clear routing problem. We can borrow tools from optimization theory
and decompose solutions under the requirements that are not aligned with per-
packet constraints. The PODC community is actively working on algorithms
for distributed computation, but there is the gap between the algorithm com-
munity and the practice. In networking, we focus on distributed congestion,
instead of distributed computation. We discussed what is the computational
model (or restrictions) of programmable networks, what are canonical problems
that we need to solve in this computational model, and whether we can apply
solutions on distributed computation to programmable networks. We also dis-
cussed whether machine learning can help network management. The machine
learning community can be engaged by creating good benchmarks and “bake
offs”. The general trend is taking optimization problems and formulating them
as learning problems. An important question is what is specific about network-
ing beyond optimizing average case vs. worst case. Many networking problems

9



have high dimensions. The ability to consider high dimensional signals is an
interesting benefit of machine learning. Competitive algorithms in the theory
community is a useful framework to define problems in programmable networks.
If the operators have no knowledge of the workload, competitive algorithms can
be useful tools to provide some form of optimal guarantees, e.g., for congestion
control. It is a difficult problem to deal with cascading effects and failures.

4.3 Security and privacy

Control plane denial of server attack We start with SDN security. The
goal is to enforce network-side security for SDN applications. The security
threat to SDN applications is that under adversarial workloads, there can be
too many packets being sent to the controller, which is essentially a denial of
service attack to the control plane. Specifically, if the attacker knows which
packets will be redirected to the controller, the attacker can easily craft such
malicious workloads. The channel between the control and data planes is PCIe,
which provides 40 Gbps bandwidth. It is much slower than the data plane speed.
While there are features on some switches that allow the data plane to batch
updates to the control plane, the control plane bandwidth is still quite limited.

Programmable switches might help to address this problem, as they can look
at more packet headers and make better decisions to prevent such attacks. A
motivating example is that in an enterprise network, we can enforce a policy
like “if no one is interacting with my user screen, and if someone suddenly
starts sending traffic, it is an indication of malware”. If the sensor information
is compiled into the packet header, then the switches can look at the sensor
information to make decisions to enforce such policies.

Memory and management network Another challenge for switch-based
solutions is that it is hard to maintain per-connection state. Programmable
switches provide the flexibility for applications to use on-chip memory for state-
ful processing, which can be exploited as a threat vector (e.g., exhaust switch
memory). Currently, operators use a separate management network to load
programs onto switches. If an attacker controls the management network, the
attacker can even wipe out configurations.

Encryption Encryption is not supported in the switch data plane. If only
a few packets are encrypted, these packets can be processed in the control
plane. In that way, encryption and decryption are done in the switch CPU.
This solution is limited, and is only suitable for control messages. It cannot be
applied to IPSec or DPI where we need to encrypt and decrypt every packet.
Today, AES encryption can be done very fast on x86 (even faster than FPGA),
because there is a native instruction for AES encryption. But there are no
native instructions in P4 for encryption. The use cases are important. We need
to draw a line and not implement everything on a switch. The switch is not
meant for general-purpose processing like encryption.

10



The switch can support XORs. But encryption requires loops and needs to
scramble the data, making it hard to perform on a switch. One possibility is to
use whitebox crypto, i.e., scrambling of the data is translated into indexing of the
tables. If the theory of whitebox crypto is made practical, it is possible to offload
whitebox crypto into a switch. While switching to a new crypto algorithm that
is more amenable to P4 (e.g., whitebox crypto) may work, it might be hard to
deploy because changing the crypto algorithm is a big problem in practice.

Another approach is to take existing algorithms and change them into table-
based approaches. For example, taking an algorithm like AES and turning
it into table-based approaches. It is also possible to implement crypto as an
instruction in the ISA as opposed to a program in P4, which can be done using
externs.

There is some debate on why we need hop-by-hop encryption if we can
already do end-to-end encryption and why P4 is the right way to implement
this. If we are doing encryption on the edge in an NF, it is unclear what is the
benefit of adding it in P4 vs. doing it in x86. P4 by itself doesn’t do encryption
on its own. We need additional extern-like support in P4 to do that. We can
also do it with additional hardware support on a NIC or in the wire. We need
to figure out what are the use cases for 6 Tbps encryption. Some people use
MACsec instead of IPSec.

In-network processing One use case is in-network processing. One of the
assumptions for in-network processing is that the switch can actually see the
data. It is not true with end-to-end cryptography. Maybe we move bits that
needed to be computed into unencrypted headers. It is interesting to see if we
can use a homomorphic encryption family of algorithms. End-to-end encryption
is mostly used for the web. In-network processing is mostly used in datacenters,
where everyone is within the same organization. As such, end-to-end encryption
may not be needed in the first place. There are some use cases like multi-tenant
datacenters in public clouds, which use end-to-end encryption to protect tenants
from adversaries.

Some control plane functions can also be moved to the data plane, such as
DHCP. These functions may use part of the data plane resources such as chip
space and cycles. But the benefit is that the equipment is already there, and
such offloading does not incur extra equipment cost.

5 Language and hardware design

The main question discussed is whether the hardware needs to change. Pro-
grammable data planes are currently based on the match-action model. But
the match-action model may not be the right model for all packet processing.
For example, some congestion-control protocols like HotCocoa [7] cannot be de-
scribed by P4 and implemented with match-action processing. It is possible to
implement them on an FPGA for a NIC, but it does not map to the language
constructs in P4. Also, for many scenarios, per-RTT operations are important,

11



not per-packet operations. For these scenarios, the model should be changed
to focus on per-RTT operations. There are some predictions on future network
hardware: state sharing will get harder, bandwidth will continue to increase,
scheduling will be hard, and instruction sets will probably change.

Today’s switches are designed to achieve line-rate. Vendors perform quite
a few optimizations to hit the line-rate tests (e.g., multicast). CPUs have a
more graceful performance degradation curve. Switches are not designed in the
same way as CPUs, because the traffic pattern is not known and the switch is
expected to handle any traffic pattern. Also providing line rate for any traffic
pattern allows switches to prevent DoS attacks. There is also a need to pro-
vide deterministic performance guarantees in some use cases, e.g., performance
isolation in multi-tenant clouds. Classic solutions like TDM might be useful
for these scenarios. Tenants need SLAs, and want to guarantee they have the
capacity they have provisioned for.

Programming data planes is fundamentally hard. We need a better interface
between the user and the compiler. There are currently some domain-specific
languages (DSLs) like P4. But even with P4, it is still difficult to develop
programs. Current programmable packet processing is made up of two com-
ponents: packet parsing and forwarding. Develops need to program different
independent components in three different sub-DSLs: parsing, forwarding, and
traffic management. There are opportunities in developing new DSLs or sub
DSLs to simplify data plane programming. Yet, multiple DSLs also pose new
questions to users as they need to figure out which DSL is most suitable to use
for their particular use cases. There is a distinction between what you want out
of the hardware and what it actually provides. DSLs can help bridge the gap
between them.

6 Testbeds, infrastructure, and education

Currently there are no testbeds available to the CISE community. One option
is to invest in a new infrastructure similar to CloudLab or to add programmable
network devices to CloudLab itself. The testbed can have a mix of switches and
NetFPGAs. P4-NetFPGA is available with licenses from Xilinx. The reference
designs are open source. The backend compiler is owned by Xilinx. The cost is
about 2K per board. CloudLab has Intel SGX. Adding programmable switches
and NetFPGAs can be done in a similar way. The low-hanging fruit is to
articulate the form of a testbed. We might use leverage with companies to
help. Some research groups have already built testbeds in the scale of multiple
switches and a few to tens of servers.

Campus networks are interesting as mini-enterprise networks. They have
real users and may allow researchers to perform more extensive experiments
than enterprise networks. But it is hard to scale outside of a single institution.
It is difficult to build a large distributed testbed like GENI. The PEERING
infrastructure might be leveraged. It can provide real data (of BGP) and is
lightweight.

12



There are also organizations like CAIDA [3]. But anonymization makes
CAIDA’s data less useful. Within the context of a campus network, it might
be possible to do something less draconian. Future research will likely be data
driven. Both static and dynamic data will be useful. We should consider sharing
data between academic institutions and collaborating with industry. There are
also opportunities in education. We should consider having students experiment
with network programmability as part of both an undergrad and grad networks
curriculum.

Appendices

A Posters

1. Praveen Tamanna: Distributed Network Monitoring and Debugging with
SwitchPointer

2. Naveen Kumar Sharma: Approximating Fair Queueing on Reconfigurable
Switches

3. Brent Stephens: Your Programmable NIC Should be a Programmable
Switch

4. Steve Ibanez: Towards P4 Programmable Traffic Management

5. Marco Canini: Scaling Machine Learning with In-Network Aggregation

6. Jialin Li: Pegasus: Load-Aware Selective Replication with an In-Network
Coherence Directory

7. Mina Tahmasbi Arashloo: Enabling Programmable Transport Protocols
on High-Speed NICs

8. Muhammad Shahbaz: Elmo: Source-Routed Multicast for Public Clouds

9. Nate Foster: p4v: Practical Verification for Programmable Data Planes

10. Kausik Subramanian: Synthesizing Data and Control Planes for Multi-
tenant Networks

11. Daehyeok Kim: Generic External Memory for Switch Data Planes

B Participants

1. Shir Landau Feibish, Princeton University

2. Justine Sherry, Carnegie Mellon University

3. Sangeetha Abdu Jyothi, University of Illinois at Urbana-Champaign

13



4. Naveen Kr. Sharma, University of Washington

5. Mario Baldi, Cisco

6. Radhika Mittal, University of Illinois at Urbana-Champaign/Massachusetts
Institute of Technology

7. Lavanya Jose, Stanford

8. Gordon Brebner, Xilinx

9. Aurojit Panda, New York University

10. Kausik Subramanian, University of Wisconsin at Madison

11. Arpit Gupta, University of California at Santa Barbara/Columbia Uni-
versity

12. Costin Raiciu, Universitatea Politehnica Bucuresti, Romania

13. Manya Ghobadi, Massachusetts Institute of Technology

14. Shriram Krishnamurthi, Brown University

15. Jack Brassil, NSF

16. Walter Willinger, NIKSUN

17. Srinivas Narayana, Rutgers University

18. Vincent Liu, University of Pennsylvania

19. Radhika Niranjan Mysore, VMware Research

20. Hongqiang Harry Liu, Alibaba

21. Mina Tahmasbi Arashloo, Princeton University

22. Dan Ports, Microsoft Research

23. Brent Stephens, University of Illinois at Chicago

24. Muhammad Shahbaz, Stanford University

25. John Marshall, Cisco

26. Soudeh Ghorbani, Johns Hopkins University

27. Jeongkeun Lee, Barefoot Networks

28. Praveen Tammana, Princeton University

29. Mihai Budiu, VMware Research

30. Mosharaf Chowdhury, University of Michigan at Ann Arbor

14



31. Ang Chen, Rice University

32. Nate Foster, Cornell University

33. Marco Canini, King Abdullah University of Science and Technology (KAUST),
KSA

34. Ryan Beckett, Microsoft Research

35. Y. Richard Yang, Yale University

36. Darleen Fisher, NSF

37. Debmalya Panigrahi, Duke University

38. Yifei Yuan, Carnegie Mellon University

39. Jialin Li, University of Washington

40. Wenchao Zhou, Georgetown University

41. Alex Sprintson, NSF

42. Tracy Kimbrel, NSF

43. Tom Anderson, University of Washington/MIT

44. David Stern, DISA

45. Ori Rottenstreich, Orbs

46. Stephen Ibanez, Stanford University

47. Daehyeok Kim, Carnegie Mellon University

48. Alan Liu, Carnegie Mellon University

References

[1] Amazon EC2 F1 instances. https://aws.amazon.com/ec2/

instance-types/f1/.

[2] Building a product using P4. https://p4.org/assets/P4WS_2019/

p4workshop19-final5.pdf.

[3] Center for Applied Internet Data Analysis (CAIDA. http://www.caida.

org/home/.

[4] Exposing Data Plane Programmability on Turn-Key Network Devices.
https://p4.org/assets/P4WS_2018/Mario_Baldi.pdf.

[5] In-band Network Telemetry (INT) Dataplane Specification. https://

github.com/p4lang/p4-applications/blob/master/docs/INT.pdf.

15

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://p4.org/assets/P4WS_2019/p4workshop19-final5.pdf
https://p4.org/assets/P4WS_2019/p4workshop19-final5.pdf
http://www.caida.org/home/
http://www.caida.org/home/
https://p4.org/assets/P4WS_2018/Mario_Baldi.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf


[6] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese.
CONGA: Distributed congestion-aware load balancing for datacenters. In
ACM SIGCOMM, August 2014.

[7] M. T. Arashloo, M. Ghobadi, J. Rexford, and D. Walker. Hotcocoa: Hard-
ware congestion control abstractions. In USENIX NSDI, 2017.

[8] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and T. Ed-
sall. drmt: Disaggregated programmable switching. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pages 1–14, New York, NY, USA, 2017. ACM.

[9] T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and R. Soulé.
Fast string searching on pisa. In Proceedings of the 2019 ACM Symposium
on SDN Research, SOSR ’19, pages 21–28, New York, NY, USA, 2019.
ACM.

[10] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Life in the
fast lane: A line-rate linear road. In Proceedings of the Symposium on SDN
Research, SOSR ’18, pages 10:1–10:7, New York, NY, USA, 2018. ACM.

[11] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica.
NetChain: Scale-free sub-RTT coordination. In USENIX NSDI, 2018.

[12] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
NetCache: Balancing key-value stores with fast in-network caching. In
ACM SOSP, 2017.

[13] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan
detection using sequential hypothesis testing. In IEEE Symposium on Se-
curity and Privacy, 2004.

[14] P. G. Kannan, R. Joshi, and M. C. Chan. Precise time-synchronization
in the data-plane using programmable switching asics. In Proceedings of
the 2019 ACM Symposium on SDN Research, SOSR ’19, pages 8–20, New
York, NY, USA, 2019. ACM.

[15] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula: Scalable
load balancing using programmable data planes. In ACM SOSR, March
2016.

[16] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan. Generic external memory
for switch data planes. In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, 2018.

[17] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed hardware design for network
performance monitoring. In Proceedings of the Conference of the ACM

16



Special Interest Group on Data Communication, SIGCOMM ’17, pages
85–98, New York, NY, USA, 2017. ACM.

[18] A. Saeed, Y. Zhao, N. Dukkipati, E. W. Zegura, M. H. Ammar, K. Harras,
and A. Vahdat. Eiffel: Efficient and flexible software packet scheduling. In
USENIX NSDI, 2019.

[19] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. R. Ports, and P. Richtárik. Scaling dis-
tributed machine learning with in-network aggregation. arXiv preprint
arXiv:1903.06701, 2019.

[20] P. Schmitt, F. Bronzino, R. Teixeira, T. Chattopadhyay, and N. Feamster.
Enhancing Transparency: Internet Video Quality Inference from Network
Traffic. In The 46th Research Conference on Communication, Information
and Internet Policy, 2018.

[21] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network processing
as a cloud service. In ACM SIGCOMM, 2012.

[22] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox: Deep packet
inspection over encrypted traffic. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication, SIGCOMM ’15,
pages 213–226, New York, NY, USA, 2015. ACM.

[23] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Pro-
grammable packet scheduling at line rate. In ACM SIGCOMM, 2016.

[24] B. Stephens, A. Akella, and M. Swift. Loom: Flexible and efficient NIC
packet scheduling. In USENIX NSDI, 2019.

[25] N. Yaseen, J. Sonchack, and V. Liu. Synchronized network snapshots.
In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, pages 402–416, New York, NY,
USA, 2018. ACM.

17


	Introduction
	Applications and use cases
	The network operator's perspective
	The equipment manufacturer and chip vendor perspective

	Challenges
	Algorithms and formal methods
	Sublineaar algorithms and sketches
	Algorithms for dynamic networks
	Security and privacy

	Language and hardware design
	Testbeds, infrastructure, and education
	Posters
	Participants

