
Network Support For
Scalable And High-Performance Cloud Exchanges

Muhammad Haseeb

New York University, USA

Jinkun Geng

Stanford University, USA

Daniel Duclos-Cavalcanti

Technical University of Munich,

Germany

Xiyu Hao

New York University, USA

Ulysses Butler

New York University, USA

Radhika Mittal

University of Illinois

Urbana-Champaign, USA

Srinivas Narayana

Rutgers University, USA

Anirudh Sivaraman

New York University, USA

ABSTRACT

Financial exchanges are migrating to the public cloud, but the best-

effort nature of the cloud fabric is at odds with the stringent net-

working requirements of the exchanges. We present Onyx, a system

for meeting such requirements which uses many well-studied tech-

niques in a new context as well as introduces new techniques that

enable a scalable cloud financial exchange. An overlay multicast

tree is used to disseminate data to 1000 participants with ≤ 1 µs

difference in data reception time between any two participants,

crucial for maintaining fair competition. Several techniques for

mitigating latency variance are introduced. Onyx also presents a

scheduling policy for trade orders that enhances an exchange’s

performance and gracefully services bursty traffic. Onyx achieves

≈50% lower latency than the AWS multicast service [1]. Onyx out-

performs an existing system, CloudEx [2] in terms of supported

number of participants, exchange’s throughput and multicast la-

tency. Onyx’s techniques can be applied to other existing systems

(e.g., DBO) to enhance their performance.

CCS CONCEPTS

• Networks → Network algorithms; Network protocol design;

Application layer protocols; Logical nodes; Packet schedul-

ing; Cloud computing; Overlay and other logical network

structures;

KEYWORDS

Cloud Financial Exchanges, Overlay Multicast, Low Latency Archi-

tecture, Packet Scheduling, Scalable Exchange

ACM Reference Format:

Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao,

Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh Sivara-

man. 2025. Network Support For Scalable And High-Performance Cloud

Exchanges. In ACM SIGCOMM 2025 Conference (SIGCOMM ’25), Septem-
ber 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 22 pages.

https://doi.org/10.1145/3718958.3750530

1 INTRODUCTION

Financial exchanges are migrating to the public cloud for reasons

such as improved scalability and reduced capital expenditure. De-

spite its benefits, the public cloud poses unique challenges. Ex-

changes have traditionally operated in on-premise or colocation

facilities, engineered for deterministic and low latency. For fair mar-

ket access, exchanges equalize cables, while employing low-jitter

switches [3], between the exchange and participant servers. This

approach ensures that (i) all participants receive market data from

the exchange simultaneously (outbound fairness) and (ii) an order

generated earlier by one participant reaches the exchange before

orders generated later by other participants (inbound fairness).
However, the public cloud lacks these enhancements. It is a best-

effort environment characterized by nondeterminism (e.g. latency

variance in Figure 1). In response, several projects have developed

techniques for cloud-based exchanges. These include using syn-

chronized clocks to compensate for nondeterminism [2], using

SmartNICs to hold data until all receivers have received it [4], and

new fairness definitions [5, 6]. These projects have demonstrated

promising results for tens of participants but exhibit significant

performance degradation as the number of participants increases.

This limitation arises because scalability was not a primary design

objective. Instead, the initial focus was on establishing a functional

proof of concept for a fair exchange on the cloud. Having made sig-

nificant progress in that regard, the next logical step is to consider

scalability. Consequently, our paper develops techniques for scale:
How do we design a network to support communication between the
exchange and ~1000 participants in the cloud while ensuring fair-
ness in the exchange?1 Further, we explore the answer to the above

question from the perspective of a cloud tenant, i.e., whether the

customers of public cloud can build a scalable financial exchange

atop the cloud without requiring special help or hardware access

from the cloud provider. In practice, a scalable exchange would also

need scale-out compute techniques for the exchange server which
we place out of scope for this paper.

Our system, Onyx, tackles two major challenges to provide net-

work support for scalable exchanges. First, how do we support

outbound communication of market data (information about the

1
We target 1000 as a number that is sufficiently larger than the typical number of

participants (≈ 100) supported by on-premises exchanges [7, 8].

https://doi.org/10.1145/3718958.3750530

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

state of market) from an exchange to 1000 market participants,

while ensuring (a) low spatial variance, i.e., all participants receive

market data nearly simultaneously, (b) low latency from the ex-

change server to the participant, and (c) low temporal variance,

i.e., latency doesn’t fluctuate over time? Second, how do we sup-

port inbound communication of participant orders to the exchange

while (a) providing chances of trades to all the traders fairly and,

(b) achieving high throughput for the exchange, especially dur-

ing intense market activity when bursts of orders arrive, causing

incast-style [9] drops? Onyx integrates well-established mecha-

nisms within a new use case as well as introduces novel techniques

to design scalable exchanges.

First, to scale outbound communication from the exchange to

a large number of participants, we employ an overlay multicast

tree composed of a root exchange VM, proxy VMs as intermediate
nodes, and participant VMs as leaf nodes. We develop a simple and

effective heuristic to tune the tree’s fan-out and depth, navigating

a trade-off between increased serialization delay due to greater

fan-out and increased propagation delay because of greater depth.

Higher fan-out leads to higher serialization/transmission delay as

outgoing messages gets serialized by the NIC so earlier messages

have noticeable lower latency than the later ones. Higher depth

of the tree introduces more VMs in the path of messages which

increases the overall latency. To lower latency and counter the

cloud’s variability, we pervasively employ hedging: routing redun-

dant copies of the market data through multiple proxy and receiver

VMs and rotating parent-to-child associations at each tree level on

each multicasted packet.

Second, to provide scalable and fair inbound communication

from participants to the exchange, we propose a sequencer that

relies on recent advancement in clock synchronization [10] that is

robust to latency fluctuations and works for VMs without hardware

support. The sequencer ensures that an exchange server sees the

messages generated by participants in their generation order so

that inbound fairness is achieved regardless of the arbitrary message

delays from participants to the exchange. We also propose a sched-

uling policy, Limit Order Queue (LOQ), that helps achieve fairness

and high order matching rate of the exchange during bursty market

activity. Finally, we reuse the overlay multicast tree in the reverse
direction to relay participants messages to the exchange which

helps against incast-style packet drops by reducing the fan-in at

the exchange when supporting a large number of participants. This

leads to high throughput for the exchange server and low latency

for trade orders.

Onyx can support a maximum throughput of 175Kmulticast mes-

sages per second, at which point it is limited by a proxy VM’s egress

bandwidth. It also scales to 1000 receivers/VMs, achieving a median

multicast latency of ≤ 250 µs while maintaining a latency difference

of ≤ 1 µs across these receivers. Onyx supports more participants

(1K as opposed to 0.1K) and achieves 50% lower latency compared

to AWS’ Transit Gateway-based multicast. On the inbound side,

Onyx efficiently handles large bursts of orders maintaining low

latencies. Onyx outperforms a prior system, CloudEx [2] in terms

of scalability, order matching rate and multicast latency. More im-

portantly, the techniques described in Onyx are meant to provide a

networking layer for the exchanges and are thus composable with

the existing systems [2, 6] to enhance their performance.

0 20 40 80 100
Time (minutes)

50

100

150

200

250

300

La
te

nc
y (

m
icr

os
ec

on
ds

)

90th Percentile Latency For Each One Second Tumbling Window for a Pair of VMs

Fig. 1: Latency between a pair of VMs varies over time

To contextualize Onyx’s absolute performance, it falls short of

heavily engineered on-premises financial exchanges, which achieve

latency differences of tens of nanoseconds across receivers using

low-jitter switches and equalized cables connecting colocated par-

ticipants. However, participant-to-exchange interfaces exist along

a performance–usability tradeoff curve: colocated participants lie at

one end, paying high premiums for direct exchange connectivity

and limited in number, while web market data APIs [11] lie at the

other end, offering low cost and ease of access at the expense of

performance with no fairness guarantees. Onyx offers a compelling

point on this curve: it delivers low and predictable latencies, with

≤ 1 µs latency differences across receivers, while scaling to 1K

participants and offering many additional benefits of the public

cloud. Appendix L further discusses Onyx’s position relative to

on-premises systems. Onyx will be open-sourced.

2 BACKGROUND

Financial Exchange Setup. An exchange typically has an exchange
server and multiple market participant (MP) servers. The exchange
server runs a matching engine (ME) to process trading orders from
the MPs and multicast market data to them. Market data reveals

market state e.g., asset prices and processed orders. Orders can be

bid orders, which aim to purchase an asset at a specific price, and

ask orders, which aim to sell an asset at a specific price.

The ME maintains a limit order book (LOB) (Fig. 4), which lists

all bid and ask orders from MPs. When a bid order’s price exceeds

or matches an ask order’s price, the two orders are executed (and

matched together) using some matching algorithm. Unexecuted

orders remain in the LOB, waiting for a match. In the price-time-

priority matching algorithm [12],
2
orders are arranged in price

levels, with those at the same level sorted by their arrival time at the

exchange (which is equivalent to sorting them by their generation

time if all cables connecting MPs to exchange are equal). An LOB

snapshot (Fig. 4) shows a separation between bid and ask price

levels, with the mid-price indicating an asset’s true value. Orders

closer to the mid-price have higher chances of getting matched

early. Any scheduling policy (e.g., LOQ) on orders should ensure

that the semantics of matching algorithm are not impacted i.e., the

sequence of matched orders should remain unchanged.

Challenges of Cloud Migration.While the public cloud offersmany

advantages, it does not offer low-level control, e.g., allowing tenants

to control wire lengths or employing low jitter switches. The public

cloud also exhibits high latency variance [14]. The latency between

2
It is a widespread matching algorithm, so we use it. Alternatives exist [13].

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

one pair of VMs can be significantly different from another pair [15].

Latency also fluctuates over time: figure 1 plots the 90𝑝 latency

between a pair of VMs in an AWS region for a tumbling window

of 1 s. The figure also shows infrequent but unpredictable latency

spikes that substantially increase latency [6, 14]. Such phenomena

make it challenging to achieve low and deterministic latency in the

cloud.

Given the above challenges, it is reasonable to ask whether finan-

cial exchanges should ever be migrated to the cloud – and if so, how.

This is an ongoing debate with reasonable arguments on both sides.

Beyond the research projects [2, 4, 6], some cloud providers are

exploring close partnerships to build private clouds for exchanges’

bespoke requirements [16, 17]. Onyx contributes to this debate by

studying what performance guarantees can be achieved if a cloud
tenant designs the exchange architecture on the public cloud with
publicly available cloud APIs. With Onyx’s DIY approach, a tenant

does not need to wait for a cloud provider to build private clusters.

Is cloud migration still relevant? Debates surrounding cloud mi-

gration have also emerged, particularly regarding its effectiveness

as a panacea for cost reduction. This discourse has contributed to

the rise of cloud repatriation –the practice of moving workloads

back from the cloud to on-premises [18]. Cloud repatriation, unlike

cloud migration, is highly relevant to large SaaS companies like

Snowflake or Dropbox, which operate at a scale where they can

benefit from economies of scale by owning infrastructure and have

consistent workloads that justify such investments. However, this

narrative doesn’t extend as well to smaller entities like financial

institutions, which lack the consistent, cloud-scale workloads to

make private infrastructure cost-effective and often benefit more

from the flexibility and cost savings of not managing their own

hardware.

Prior Work and Onyx’s Motivation. CloudEx [2] is among the ear-

liest systems designed for cloud-based exchanges and capitalizes

on accurate clock synchronization. To maintain outbound fairness,

MPs wait until a set timeout before processing any order to ensure

every MP has received the market data. For inbound fairness, the

ME waits until a set timeout before processing any order to ensure

that all the earlier generated orders have been received and ordered

by their generation timestamps. The timeouts if too big, lead to low

performance and if too small, run the risk of violating fairness. As

the number of participants increase, tuning the timeouts become

difficult as avenues for latency variance and straggler behavior

increases.

DBO [6] leverages mechanisms to always guarantee fairness

among participants by decoupling fairness from latency fluctua-

tions, although it is only applicable to a subset of trades that depend

on the last received market data batch. As the number of partici-

pants increase, DBO also suffer from degraded performance because

of (i) incast on the inbound side and, (ii) large latency of market

data because of increased transmission delay. Both CloudEx and

DBO can benefit from our techniques to achieve high performance

at scale.

Onyx’s main contribution is architecting for scale while main-

taining fairness and achieving high performance. Onyx adopts the

idea of synchronized clocks from CloudEx, but scales the system

much further by using a communication tree in both the inbound

and outbound directions to achieve high performance with a large

number of participants. Onyx augments the tree with (i) a message

sequencing mechanism to ensure inbound fairness under latency

fluctuations (ii) a scheduling algorithm to achieve high performance

under bursts of orders and, (iii) several variance mitigation tech-

niques to achieve fairness.

3 ONYX OVERVIEW

Setup and goals. EachMPVM (𝑉𝑀𝑖 in fig. 2) hosts an order gateway

and a trading algorithm.
3
Clocks of all MP VMs and the exchange

server are synchronized using Huygens algorithm [10], enabling

nanoseconds level synchronization for VMs without hardware sup-

port. A trading algorithm generates the orders and submits it to

the colocated gateway (in the same VM). A gateway attaches its

current timestamp to an order and forwards it to the exchange (via

TCP [19]), which hosts the matching engine (ME) to process orders.

MP VMs are controlled by the exchange which loads the trading

algorithms in them. Market data from the exchange (via UDP [19])

first arrives at a gateway which then forwards it to the trading

algorithm. Such a model has been proposed previously [8, 20].
4

Onyx aims to provide fairness during the competition among MPs

for both the outbound (exchange to MPs) and inbound (MPs to

exchange) directions.

Definition 3.1 (Outbound Fairness). Every market data message

sent from the exchange server to the market participants (MPs)

should be seen by all the MPs simultaneously.

Definition 3.2 (Inbound Fairness). An order generated earlier than
other orders should be processed by the matching engine earlier

than the other orders, irrespective of which MP generated which

order.

Given the above definitions, what existing systems and Onyx

achieve is an approximation: (i) for outbound fairness, the difference

between multicast latency between any two participants is reduced

as much as possible and (ii) for inbound fairness, orders should be

executed in the order of their generation-timestamps (while having

synchronized clocks). Onyx further aims to achieve high perfor-

mance i.e., supporting a larger number of MPs and achieving a

higher exchange throughput than the previous works while achiev-

ing fairness. Figure 2 presents Onyx’s architecture. Onyx employs a

bidirectional overlay tree: the exchange server is the root and MPs

are the leaves, with intermediate proxy nodes. It is well known that

trees help scale communication to many receivers [21, 22]. We build

on such a tree to provide an overlay multicast service for market

data and handle order submissions from a large number of MPs,

but adapt the tree to the high-variance environment of the public

cloud.

Outbound: ME to Participants (market data multicast). On the

outbound side of an exchange, we augment the base tree with 3

techniques to lower multicast latency and minimize the latency

variance: (i) round-robin packet spraying, (ii) proxy hedging and

(iii) receiver hedging. All 3 hedge the risk of some part of the sys-

tem exhibiting performance variance so that the overall multicast

3
“trading algorithm” and “MP” are interchangeably used

4
A brief discussion of several deployment/trust models and their performance is

presented in Appendix G.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

Round-Robin Packet

Spraying
(children of proxies change
after each message)

𝑃0
0

Proxy Hedging

(Multiple parents)

𝑃1
0 𝑃2

0

𝑃0
1 𝑃1

1 𝑃2
1 𝑃3

1 𝑃4
1 𝑃5

1 𝑃6
1 𝑃7

1 𝑃8
1

𝑉𝑀1 𝑉𝑀2 𝑉𝑀3 𝑉𝑀4 𝑉𝑀6 𝑉𝑀7𝑉𝑀0 𝑉𝑀5 𝑉𝑀8

Receiver Hedging: Each MP employs multiple VMs to receive market data and

submit orders

Exchange Server
- Market data multicast

- Sequencer for incoming trades

- Order matching engine (ME)

𝑃0
0 𝑃1

0 𝑃2
0

𝑃0
1 𝑃1

1 𝑃2
1 𝑃3

1 𝑃4
1 𝑃5

1 𝑃6
1 𝑃7

1 𝑃8
1

𝑉𝑀1 𝑉𝑀2 𝑉𝑀3 𝑉𝑀4 𝑉𝑀6 𝑉𝑀7𝑉𝑀0 𝑉𝑀5 𝑉𝑀8

Exchange Server

Orders closer to mid-price

(i.e.,) will be prioritized

and represent different orders from MPs. is

closer to the mid-price and thus is more likely to be matched at exchange

Receiver Hedging

- Runs a sequencer

- LOQ scheduling

- Runs an order

gateway
- Hosts MP trading algo

M
a
rk

e
t
D

a
ta

 (
U

D
P

)

T
ra

d
e

 O
rd

e
rs

 (
T

C
P

)

Fig. 2: Overview of Onyx.

latency as well as latency difference across receivers is sufficiently

reduced.

Round-robin packet spraying helps with reducing impact of la-

tency spikes on the links as paths of messages are continuously

changed. Proxy hedging mitigates the impact of straggler proxy

nodes as each child node receives duplicate messages from aunt

nodes. Lastly, receiver hedging hedges against the risk of a receiver

VM becoming slow to process incoming messages by assigning two

VMs to each trader/participant running the same trading algorithm.

Inbound: Participants to ME (orders submission). We develop a

sequencer that sits at the ingress of the exchange. All the incoming

orders from MPs are fed to the sequencer while the output (the

sequenced orders) is processed by the matching engine (ME) hosted

by the exchange server. The sequencer ensures the exchange sees

orders in the order of their generation timestamps.

During bursty market activity, MPs generate large number of

orders overwhelming the exchange. As we employ TCP on the

inbound, the overwhelming of the exchange leads to queue build

ups at the MP VMs as packet drops increases. A special priority

queue, Limit Order Queue (LOQ), runs at the egress of each MP

VM for servicing the queues so that latency of orders remains low

and high order matching rate at ME is achieved, while ensuring

inbound fairness. LOQ schedules the queued orders in a way that

if an order is going to be executed after some other orders by the

exchange, then it can afford to wait longer in the queue without

affecting inbound fairness while giving a chance to other, more

critical, orders to be serviced.

Further, as the number of MPs increases, the ingress of the ex-

change server becomes a bottleneck because of the large number of

MPs submitting orders. Even if the cumulative load of all the MPs is

below the ingress capacity of the exchange, the instantaneous over-

load leads to incast-style packet drops. We reuse the multicast tree

but in the reverse direction (for MP-to-exchange communication):

MPs submit their orders to their parent proxies where it travels up

the tree and reaches the ME at the root. It reduces the fan-in factor

of ME: the ME has to receive and process streams of orders from

a small number of proxies instead of all MPs. This reduces packet

losses (and resulting TCP retransmissions), and increases the ex-

change’s throughput. As queues may form in the tree nodes, LOQ is

used in these nodes as well. TCP connections are terminated at each

proxy, allowing orders’ reordering by LOQ. For audience’s ease, all

the system’s assumptions, mentioned appropriately in respective

sections, are also summarized in Appendix O.

4 MARKET DATA MULTICAST

Due to the lack of switch support, the multicast in the cloud is

typically implemented by using multiple direct unicasts. Since the

back-to-back unicasts are serialized over the sender’s egress, the

latter receivers (among a large number of receivers) will receive the

message much later than the others due to the cumulative serializa-

tion delay at the sender. To reduce this effect, we use an overlay tree,

helping us to scale number of receivers. As illustrated in Figure 2,

the sender sits at the root of the tree and only sends its messages to

a limited number of proxies. Each proxy then relays the message

down the tree to the lower-layer proxies, and recursively down to

receiver VMs. Since each node’s fanout is limited, the serialization

delay is constrained at each layer, reducing the variance of message

delays among receivers and reducing the multicast latency, i.e., the

worst one-way delay (OWD) to any receiver as shown in Fig. 3.

Tuning the tree’s fanout (𝐹) and depth (𝐷) is crucial for mini-

mizing multicast latency for a given number of receivers (𝑁) as

extra hops in the path of messages increase latency. We conduct

experiments with various <𝐷, 𝐹> for 𝑁 = 10, 100, and 1000 and

observe that 𝐹 ≈ 10 and 𝐷 =
⌈
log

10
𝑁
⌉
yield sufficiently low la-

tency, and more sophisticated strategies bring little gains beyond

that (Appendix A) because of the cloud’s inherent variability.

For ensuring outbound fairness, we follow CloudEx’s “hold-and-

release” technique [2] that achieves simultaneous delivery (i.e.,

negligible multicast latency difference across any two receivers).

Here we summarize the technique:

Hold-and-release: Exchange attaches a deadline to all outgoing

market data messages. Each order gateway (inside receiver VMs)

holds the received messages and releases them to the MP’s trading

algorithms at the deadline (or after it, if a message does not arrive at

the gateway before the deadline). The exchange calculates the dead-

line for a message by adding a headroom to the sending time. The

headroom is decided by the maximum latency from the exchange to

every receiver. The exchange and the gateways use periodic probes

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

0 10 20 30 40 50 60 70 80 90
Receiver ID

50

100

150

200

250

300

95
th

 p
er

ce
nt

ile
 O

W
D

 (u
s)

Direct Unicasts
Tree

Fig. 3: Tree scales well.

$1 $2 $3 $4 $6 $7 $8 $9

Mid Price

Vo
lu

m
e

Bids Asks

Fig. 4: LOB snapshot.

to estimate latency from the exchange to every receiver VM. Hold-

and-release ensures, for most data as shown by evaluation, that

each multicast message is processed by all MPs at the same time.

A scalable implementation is discussed in Appendix B which uses

the multicast tree in reverse to send back estimated latencies from

a large number of gateways to the exchange for aiding calculation

of deadlines.

Since Onyx targets a much larger number (~1000) of receivers

than CloudEx (~10), simply applying the “hold-and-release” is not

sufficient. As the number of receivers increases and the latency

exhibits high variance, the required holding duration by a gateway

increases which inflates the multicast latency. To improve scala-

bility, we use a tree and incorporate three optimizations into our

tree to reduce both the end-to-end latency and the latency variance,

leading to low holding durations. As the temporal latency variance

decreases, the deadline of hold-and-release become more effective.

4.1 Round-Robin Packet Spraying

In order to reduce latency spikes and alleviate the impact of bursts

of market data, we develop round-robin packet spraying (RRPS).

In RRPS, parent-child links in the tree are flexible, i.e., proxies

change their children after each multicast message. Specifically, for

a given proxy, on every new multicast message, the set of children

is circularly shifted by 1. For example, the first proxy in a layer will

have the first 𝐹 proxies of the next layer as its children for message

0, the next 𝐹 proxies as children for message 1, etc. This ensures that

each proxy has a parent for each message, while the set of children

for a parent proxy continuously changes. With RRPS, a single leaf

node in a proxy tree has a total of

∏𝐷−1
𝑑=1

𝐹𝑑 different paths starting

from the root node. Successive messages traverse this abundance

of paths in a round-robin fashion. By contrast, without RRPS, there

is only one path from the root to each leaf node and all messages

traverse that path. The increased path diversity provides two major

benefits for latency reduction as discussed in the following.

First, if a spike occurs on any VM-to-VM link, only a subset of

messages is impacted: Since messages are round-robined across all

available paths, many messages will take alternative paths that may

avoid the affected link.

Second, RRPS uncovers and utilizes new paths that were unused

earlier. For example, consider two adjacent proxy layers: a parent

layer with 𝑃 proxies and a children layer with 𝑃 × 𝐹 proxies where

each parent proxy has 𝐹 children. Without RRPS, the number of

paths utilized by messages going from parents to children is 𝑃 × 𝐹 .
With RRPS, there are 𝑃 × 𝑃 × 𝐹 paths. This allows us to distribute

bursts among many more paths, which reduces queue build-up and

latency.

RRPS works because there is an abundance of paths within an

overlay proxy tree. This is because every VM in a cloud region

can communicate with every other VM –effectively the network

topology is a clique. This is unlike the links in physical networks’

multicast [23] where the network topology is not a clique and is

limited by physical constraints like geographic distance and cables.

In Appendix K, we present a Monte-Carlo analysis exhibiting la-

tency reduction because of RRPS when some links undergo latency

fluctuations. We assume non-IID links’ latencies as it may closely

reflect the conditions where only a subset of links may go through

spikes at a time.

4.2 Proxy Hedging

A VM’s performance in the cloud can degrade due to factors like

noisy neighbors or live VM migration, causing latency fluctuations

for all messages passing through the VM [24]. To mitigate this,

we develop proxy hedging, where each node in the tree receives

multiple copies of a message from proxies in the higher layer. A

node processes only the first copy and discards duplicates, thus

reducing the impact of any straggler proxy VMs. It decreases both

temporal and spatial latency variance, leading tomore stable latency

and reducing the delivery window size (i.e., the difference between

the earliest and latest receiver’s latency).

Each proxy sends messages to the children of 𝐻 of its siblings

along with sending messages to children of its own where 𝐻 is the

hedging factor. For example, in Figure 2 (left), when hedging is not

enabled (i.e., 𝐻 = 0), proxy 𝑃1
3
(3
𝑟𝑑

proxy in 1
𝑠𝑡

layer) only receives

messages from 𝑃0
1
. As a result, 𝑃1

3
may suffer from high latency if

𝑃0
1
or the path from 𝑃0

1
to 𝑃1

3
encounters latency fluctuations. By

using hedging, 𝑃1
3
not only receives messages from 𝑃0

1
, but also

receives the same messages from one (if 𝐻 = 1) other node, 𝑃0
0
. A

proxy processes the earliest copy among 𝐻 + 1 copies of a message

and discards the rest, achieving significant latency reduction.

Unlike the previous technique, proxy hedging leads to redundant

work which decreases the goodput of a proxy. The goodput of a

proxy node can be defined as:
1

𝐻+1 × throughput because each proxy
sends redundant messages to the children of𝐻 siblings. One way to

recover the lost throughput is to employ several parallel trees that

share the root and the leaves (assuming the leaves have enough

ingress bandwidth). The increased number of proxies also raises

concerns of dollar cost, which could potentially be a drawback here.

Appendix H includes an estimation of monetary cost. Nevertheless,

latency and latency variance minimization is the primary objective

in financial exchanges as it affects fairness while the throughput

(on the outbound side), a less scarce resource for exchanges, can be

enhanced by various orthogonal approaches.

Choosing H: Increasing 𝐻 brings benefits i.e., latency and latency

variance reduction but it also reduces the multicast message rate

that can be supported because of the redundant work performed by

proxies. So it is beneficial to choose a low 𝐻 that provides sufficient

performance benefits.

We empirically chose 𝐻=2. We tested 𝐻 = 1 to 3 and noted

that most of the benefits are achieved by 𝐻 = 2, while 𝐻 = 3 did

not bring noticeable improvement. We also found empirically that

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

changing the set of VMs does not change the above observation.

We further find out via a Monte Carlo simulation that a small

𝐻 is sufficient for reaping most benefits of proxy hedging.

It is presented in Appendix C that corroborates: (i) latency and

its variance reduces as 𝐻 increases, and (ii) increasing 𝐻 shows

diminishing returns.

4.3 Receiver Hedging

If a VM belonging to an MP becomes a straggler, that MP would

be at the losing end of many trades, as the market data it receives

may lag behind other MPs. As a remedy, we assign each MP two

receiver VMs, where both may execute the same trading program,

a deterministic state machine. Since anomalies are less likely to

affect both VMs simultaneously, performance of a trader improves

significantly at the tail.

As duplicate orders will be generated by the two VMs, they can

be de-duplicated by the exchange using a hash carried by each order

which is computed to be the same on identical orders across the two

VMs (Appendix E). Furthermore, a simple mechanism where each

VM processes the packets in order of their sequence numbers (while

requesting retransmission for lost packets from a rewinder [25], a

common practice in the exchanges) is sufficient for ensuring that

the states of two VMs never diverge under packet losses. We

explain this further in Appendix E and provide a proof showing how

packet losses can only only make the state of one VM lag behind

the other VM but will never diverge and non-identical orders will

never be issued.

While Appendix E outlines a mechanism for maintaining syn-

chronized VM states, the synchronization is offered as an optional

feature. For some trading strategies, the benefits of prompt respon-

siveness may outweigh the costs of state divergence. Therefore,

some MPs may opt out in favor of responding quickly to out-of-

order received market data.

4.4 Remarks on Multicast Packet Losses

Packet losses adversely impact fairness. They lead to different view

of the market for different MPs. On-premises’ exchange infrastruc-

ture is engineered to provide negligible packet losses and the MPs

only have to request a retransmission rarely. Onyx multicast service

needs to similarly provide low losses. Our redundancy techniques

help lower the packet losses, but fortunately even without our

techniques, the packet losses in the cloud are very low.

GCP’s Global Performance Dashboard reports 0.00262% packet-

loss in the us-east4-c region for all VM-to-VM communication over

a 7-day period, from April 25, 2025, 2:33 PM to May 2, 2025, 2:00

PM.
5
During this period, the peak loss rate (per minute) stayed

at ≤ 0.0174%. We attribute such small packet losses to the fact

that cloud VMs come with assigned egress and ingress capacity

and as long as VMs stay within their capacity budget, they do not

experience substantial packet losses. We design Onyx accordingly.

We also perform an experiment to study the losses. During our

1-hour benchmark with 100 participant VMs on GCP, the overall

packet losses stayed below 0.005%, while the peak packet losses

(i.e., losses observed in any one minute duration) never exceeded

5
GCPmeasures this by sending and receiving probe packets between VMs, not utilizing

the actual clients’ traffic.

0.045%, which implies that the losses are also small at tail. Utilizing

receiver hedging further decreases the losses to negligible rates

(more details in Appendix F).

5 ORDERS SUBMISSION SERVICE

We aim to provide an order submission service that can achieve both

inbound fairness and high throughput. We introduce a sequencer at

the exchange server to enable fair processing of orders. We install a

novel scheduling policy, Limit Order Queue (LOQ) policy, on each

gateway and proxy, which significantly improves the matching

rate of the exchange. For simplicity, we first describe the sequencer

and LOQ in a setting where gateways are directly connected to

the exchange server (without a tree). Then, we explain how the

multicast tree is integrated to improve the performance of the order

submission service where the sequencer and LOQ are employed at

each tree node to help maintain inbound fairness while handling

bursts of orders.

5.1 Sequencer

The exchange has to provide a fair chance of trading to all the

MPs, which requires the exchange to process MPs’ orders following

their generation timestamps (attached by trusted gateways). On-

prem exchanges equalize the latency between MP servers and the

exchange server by connecting them with the cables of the same

length. Such an approach is not feasible in the public cloud where

the tenants have no access to the underlying infrastructure. We

seek an alternative approach by using synchronized clocks, widely

available nowadays.

We synchronize the clocks on both MPs and the exchange VMs

with an accuracy of 10s of nanoseconds using Huygens [10],
6
a

clock synchronization algorithm robust to latency variance. We

place a sequencer at the exchange server, which holds the incoming

orders and releases them according to the global FIFO order i.e.,

the sequencer ensures that an exchange sees the orders with times-

tamps in the non-decreasing order. The sequencer only releases

an order of an MP to the ME when (i) it sees higher timestamped

orders from every other MP and the (ii) the current order has the

lowest timestamp among the orders present at the sequencer.
7
For

liveness (i.e., sequencer does not block processing of some orders

for long periods), gateways periodically generate dummy orders

on behalf of inactive MPs. Given ordered delivery per MP (e.g., via

TCP), the sequencer ensures safety, i.e., inbound fairness. This is

different from the prior works (§7): (i) CloudEx violates safety even

with accurate clock synchronization because it waits for orders only

until a set timeout and, (ii) DBO holds safety, although always, for

only one class of orders that depend on last received market data.

Onyx’s safety comes at the cost of liveness as a failure of a gateway

will block the sequencer. As is common practice in distributed sys-

tems [26–29], the failure detection of gateways is conducted by a

standalone configuration manager (e.g., Zookeeper), and is beyond

the scope of this work.

5.1.1 Sequencer Mechanism. MPs generate order messages

that are sent to the exchange server via a reliable channel that

6
As we deal with latencies on the order of microseconds, such a clock synchronization

accuracy is sufficient.

7
Ties can be broken by any mechanism made public to MPs (e.g., MP ID).

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

provides in-order delivery (e.g., TCP). The exchange maintains a

limit order book (LOB) and runs continuous <price, time> priority

matching algorithm [12] on all the incoming trade orders. We use

𝑚𝑖
𝑡 to represent an order message from 𝑝𝑖 (i.e., 𝑖

𝑡ℎ
MP) with an

order generation timestamp 𝑡 . At the exchange server, messages

are fed to the sequencer. Sequencer works in a streaming fashion,

takes the messages as input, sequences them and releases them to

the ME.

The sequencer maintains 𝑞 : {𝑚𝑖
𝑡 } where 𝑞 is a priority queue

with lexicographic ordering on <𝑡 , 𝑖> of messages. The sequencer

supports enqeue and deqeue operations. Pseudocode is pre-

sented in Appendix M.

Enqeue: For each new message, (i) it is added to 𝑞 and, (ii) de-

queue is invoked repeatedly as long as 𝑞 contains non-zero number

of messages from each 𝑝𝑖 .

Deqeue: Onemessage𝑚𝑖
𝑡 is dequeued from𝑞.𝑚

𝑖
𝑡 is considered

sequenced at this point and presented to the ME.

5.2 Limit Order Queue

During periods of bursty activity in the market, incast at the ex-

change’s ingress occurs, leading to excessive TCP retransmissions

and queue build-ups at the gateways. To tackle the queuing de-

lays incurred at the gateways, we develop a scheduling scheme

–Limit Order Queue (LOQ) scheduling–to schedule the orders at

each gateway, which can effectively reduce order matching latency

and improve the order matching rate at ME during periods of bursts.

LOQ is an application-level priority queue which is serviced in a

work-conserving manner. It attempts to schedule orders in a way

to enhance ME’s performance while preserving inbound fairness.

5.2.1 LOQMechanism. LOQ running at each gateway (and

at proxy VMs as described later) takes the orders as input and

schedules them to keep the matching engine (ME) busy; ME idles if

it receives orders that cannot be matched and they just need to wait

in the limit order book. LOQ categorizes the orders into two classes:

orders with prices closer to the mid-price, referred to as critical
orders, are matched by the engine before other non-critical orders,
which remain in the limit order book (LOB) awaiting favorable

mid-price movement. LOQ leverages this domain knowledge to

identify and prioritize critical orders over non-critical orders so

that the exchange does not waste time in receiving orders that are

not going to get matched soon and only needs to be put in the

limit order book while the critical orders remain to be processed.

In the following we explain, how LOQ works and how mid-price

movement is accounted for.

LOQ scheduling, for preserving fairness, requires two parame-

ters: (i) mid-price𝑚 and, (ii) action window𝑤 . As gateways receive

all the market data, they have enough information to infer𝑚 (with

a lag proportional to the multicast latency). By design of our out-

bound communication, gateways receive each market datum at the

same time (with high probability) so they infer 𝑚 almost simul-

taneously. Simultaneous inference is an assumption for LOQ to

preserve inbound fairness, and as sometimes this assumption can

be violated, we later study its impact on fairness. The action win-

dow𝑤 indicates irrationality tolerance: (i) if an asset is available for

purchase for a price𝑚 then a buyer can bid on it with a maximum

price of𝑚 +𝑤 and, (ii) if an asset has a highest bid of price𝑚 then

a seller can ask for a minimum price of𝑚 −𝑤 .𝑤 is configured by

the exchange operator.

An incoming order is categorized as critical if it has a price in

the range [𝑚 −𝑤 ,𝑚 +𝑤], otherwise it is non-critical i.e., if a bid
has a price in the range (−∞,𝑚 −𝑤) or an ask has a price in the

range (𝑚 +𝑤 ,∞), then it is non-critical.

An LOQ is a priority queue that sorts the orders lexicographically

by tuple <I𝑚 , 𝑐 , 𝑡> where I𝑚 starts from 0 and is incremented

every time 𝑚 changes, 𝑐 is 0 if an order is critical otherwise it

is 1 and 𝑡 denotes the generation timestamp of an order. LOQ

maintains a global variable I𝑚 while 𝑐 is calculated per order while

enqueuing it. I𝑚 at different gatewaysmay sometimes differ because

of non-perfect simultaneous delivery and packet losses which has

an adverse impact on inbound fairness discussed later. LOQ design

is motivated by the need to preserve inbound fairness most of

the time i.e., as long as assumptions of clock synchronization and

simultaneous delivery hold.

5.2.2 Inbound fairness under LOQ. For safety, the sequencer
assumes that messages of a single MP arrive at the sequencer in

their generation order. As LOQ at a gateway reorders the messages,

this assumption is violated. However, we claim that fairness is still

achieved as we have designed the LOQ policy to do so. Here we

provide the intuition of our claim while Appendix I further expands

on it.

Assume there is a static mid-price. Instead of looking at the order

in which orders are seen by the ME, let’s look at the order in which

the orders are executed by the ME. Executable/critical orders are

those with price in [𝑚−𝑤 ,𝑚 +𝑤] i.e., the they get executed strictly

before the other orders. LOQ ensures that if an order is selected for

execution by ME, then all the older executable orders must have

been executed already as LOQ ensures that executable orders are

sorted by their timestamps (and a sequencer consults such LOQ

instances and sequences them in order of timestamps). So, ME never

executes an executable order if it has not executed all the older

executable orders which preserves fairness. When the mid-price

moves, LOQ ensures that the orders generated after the movement

have lower priority than the prior orders (due to 𝐼𝑚 being the first

element of the tuple used by LOQ’s priority function), leading to

fairness.

5.2.3 Impact of multicast losses on LOQ. If a multicast

packet carrying information that could update an MP’s mid-price

view is lost, the mid-price ID of that MP will lag behind those

of other MPs. In such cases, unfairness will persist until the lost

packet is recovered (or the mid-price ID is refreshed by any future

received message). This underscores the importance of maintaining

low packet losses, an objective met by today’s public cloud infras-

tructure (§4.4). We later evaluate the impact of losses on LOQ via a

simulation.

5.3 Reusing Multicast Tree In Reverse

As the number of MPs grows, the exchange’s performance degrades

as it cannot keep up with offered load. We find that even if the

average offered load to an exchange stays constant, the growing

number of MPs leads to performance degradation as instantaneous

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

load may exceed the exchange’s capacity due to increased fan-in

factor.

In such scenarios, we observe a significant losses of MPs’ orders

that leads to decrease in the exchange’s throughput and increased

latency for orders. We employ a simple strategy: reuse the multicast

tree in the reverse direction for relaying the orders to the exchange.

The reduced fan-in at the exchange reduces the losses while packet

queues form at the tree nodes. We run LOQ at each tree node to

service the queues, leading to a significantly higher throughput.

Furthermore, running LOQ at proxy nodes leads to better sched-

uling compared to running it at just the gateways. A proxy has

messages from several MPs in its queue and can prioritize messages

of one MP over the messages of another MP –as long as it does

not affect fairness– whereas an LOQ at a gateway only has the

opportunity of prioritizing messages of an MP over the messages

of the same MP.

Fairness when using a tree. Achieving fairness requires that an

LOQ instance at each tree node is accompanied by a sequencer

instance so that LOQ can operate on the messages of all children

nodes fairly. Without a sequencer, a delayed message of an MP may

not get assigned its proper priority by LOQ, which would eventually

result into safety (fairness) violation at the exchange server. When a

sequencer is used at every tree node, it only accounts for messages

from its children nodes and not all MPs.

Other methods for dealing with incast: Several methods

(Homa [30], Protego [31], Breakwater [32], DCTCP [33]) for incast

mitigation and overload control have been proposed in the literature.

The methods are largely orthogonal to our technique of utilizing

the tree in reverse which we can do solely because we have the

control of an application that lends us a tree of VMs. Credit-based

overload control schemes [31, 32] are composable to Onyx, enhanc-

ing Onyx’s performance by reducing packet losses/retransmissions.

However, a tree further gives us the opportunity to do better sched-

uling (LOQ) on multiple clients (MPs) data which is not possible

without a tree/intermediate nodes and forming the queues only

at the order gateways; as would be the case if we use existing

techniques.

200 300 400 500
Overall Multicast Latency (microseconds)

0

20

40

60

80

100

C
D

F

AWS TG
DU
JasperOnyx

Fig. 5: Onyx has lower OML than DU, AWS TGW

6 EVALUATION

We focus on comparison against a prior system, CloudEx [2]. As

Onyx can be viewed as CloudEx augmented with techniques to

enhance performance under large number of participants, the com-

parison with CloudEx shows how far CloudEx can be scaled. We

also present an ablation study as Onyx.

For most of the experiments, we use 100 MPs and a 5K multicast

messages per second (MPS) rate. For scale, some experiments utilize

1000 MPs and this is mentioned in the respective sections. In our

experiments, no two MPs share a VM. In practice, multiple MPs

could be hosted in one VM to further enhance scalability. As receiver

hedging improves performance at the cost of one extra VM per MP,

we do not include it in most experiments to better exhibit the impact

of other techniques. It is mentioned wherever it is used.

Overall multicast latency (OML) refers to the latency experi-

enced by the last receiver that receives a multicast message. The

delivery window size (DWS) is the maximum difference in the

latency of any two receivers. One DWS sample is computed for

each multicast message, so any mentioned percentiles (50p DWS)

correspond to the aggregated statistic over the messages. We use

Huygens algorithm [10] that synchronizes clocks of all the VMs

with a 90𝑝 offset of ≤ 100 ns.

6.1 Multicast Latency Comparison

We consider the following baselines and compare their multicast

performance with Onyx.

• Direct Unicast (DU): Sender directly sends a copy of amulticast

message to each receiver. io-uring is utilized to minimize the

overhead of syscalls and we observe it has better performance than

socket based DU, so we utilize io-uring based DU for comparing

against Onyx.

• AWS Transit Gateway: AWS provides TGW-based multi-

cast [1]. It requires the sender to send message to a gateway which

then replicates and sends one copy to each receiver. It can support

at most 100 receivers [34] per multicast group.

Figure 5 shows that Onyx outperforms DU and AWS-TG. The

median latency for Onyx is 129 µs which is 43% lower than the

latency of AWS TG (228 µs) and 49% lower than the latency by DU

(254 µs). At 90p, Onyx shows ≈ 75% lower latency than both DU

and AWS TG. Moreover, Onyx shows predictable latency as higher

percentiles are very close to the median in contrast to the other

techniques.

6.2 Outbound Fairness Comparison

We measure the DWS of Onyx and CloudEx to compare their out-

bound fairness. A smaller DWS indicates a higher level of outbound

fairness (i.e., simultaneous delivery).

Figure 6a shows that Onyx achieves a DWS of ≤ 1 µs at very high

percentiles (up to 92𝑝). Without proxy hedging, the DWS becomes

larger than ≤ 1 µs at earlier percentile (87
𝑡ℎ
). CloudEx achieves

fairness but at the cost of high OML. Later, we show that using

receiver hedging achieves a DWS of ≤ 1 µs at 99.9p for Onyx.

Figure 6b shows that OML increases significantly for CloudEx

and Onyx without proxy hedging. In these systems, the deadlines

calculated by the hold-and-release are far into the future to cover

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

−200 0 200 400 600 800 1000 1200 1400
Delivery Window Size (microseconds)

0

20

40

60

80

100
C
D

F

Onyx, H=2
CloudEx
Onyx, H=0

(a) Onyx with hedging achieves a narrow

DWS

0 200 400 600 800 1000 1200 1400
Overall Multicast Latency (microseconds)

0

20

40

60

80

100

C
D

F

(b) CloudEx shows high OML, like Onyx

𝐻 = 0

0 200 400 600 800 1000 1200 1400
Mean Holding Duration (microseconds)

0

20

40

60

80

100

C
D

F

(c) Onyx with hedging requires less hold-

ing

Fig. 6: Outbound fairness and comparison with CloudEx

the high latency variance. This leads to high holding duration at

the receivers as shown in figure 6c, increasing OML.

6.3 Scaling Onyx Multicast

Scaling N to 1000. In contrast to the previous fair multicast so-

lutions that only work with a few 10s of receivers (e.g., [1, 4, 6]),

Onyx aims to implement a more scalable multicast service which

can support 1000 receivers and potentially even more. Figure 7

plots Onyx’s multicast latency for 100 receivers and 1000 receivers.

Our overlay techniques for reducing latency enable Onyx to keep a

graceful latency growth as the number of receivers increase.

Fairness. When employing hold-and-release, a median DWS of

≤ 1 µs is achieved for 𝑁 = 1000. However, the highest percentile at

which DWS stays ≤ 1 µs decreases as 𝑁 increases. We define the

probability of fairness (𝑃 (𝐹)) as the highest percentile where DWS

is ≤ 1 µs. We achieve 𝑃 (𝐹) = 92 for 100 receivers and 𝑃 (𝐹) = 89 for

1K receivers. We will show later that receiver hedging increases

𝑃 (𝐹) to 99.9 at the cost of one extra VM per receiver.

Throughput. With 466B packets, we achieve a multicast message

rate of 350K MPS, without proxy hedging (and 175 MPS with proxy

heding, H=1). Onyx utilizes ≈80% of the egress bandwidth of a

c2d-highcpu-8VMonGCPwhile maintaining negligible multicast

packet losses. The specified VM has an egress bandwidth of 16Gbps.

6.4 Orders Submission Performance

Figure 8 shows the order matching rate of the exchange server.

Onyx outperforms CloudEx by an order of magnitude. 100 MPs

cumulatively generate 100K orders per second each where periodic

bursts occur (shown as shaded regions) increasing the order gener-

ation rate 20×. MPs stop generating the orders after 20s. Onyx is

able to keep up with the offered load and finishes processing the

orders right after the MPs stop. CloudEx achieves significantly low

order matching rate and builds up queues that are processed long

after the MPs stop. Onyx achieves higher order matching rate when

bursts occurs due to LOQ. The median latency of orders with Onyx

is ≈ 97% lower compared to CloudEx.

Limit Order Queue (LOQ) Performance We compare LOQ to a

FIFO queue, which we refer to as SimplePQ. SimplePQ does not

differentiate between critical and non-critical orders, but sorts any

200 400 600 800 1000 1200 1400 1600
Overall Multicast Latency (microseconds)

0

20

40

60

80

100

C
D

F

100 Receivers
1000 Receivers

Fig. 7: Onyx scales well with median OML ≤250µs

queued orders by timestamps while LOQ sorts by criticality as well

as by timestamps. As sorting by timestamp helps the ME which

needs to sort the order similarly, we isolate the effect of LOQ’s sort-

ing by criticality by having SimplePQ sort the orders by timestamp

as well.

0 10 20 30 40
Timeline (seconds)

10
4

10
5

Th
ro
ug
hp
ut

 (p
kt
s/
se
c)

MPs stop here

Onyx
CloudEx

Fig. 8: Onyx achieves high order matching rate.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

0k

20
0k

Or
de

r M
at

ch
in

g
 R

at
e

(p
er

 se
co

nd
)

0 5 10 15 20
Relative Seconds

104

106

Or
de

rs
 L

at
en

cy

(µ
s)

SimplePQ
LOQ

Fig. 9: LOQ effectively han-

dles bursts (shaded).

0
50

10
0

15
0

%
-a

ge
 In

cr
ea

se
 In

M
E

Th
ro

ug
hp

ut
 11 13 15 17 19 1

11
1

13
Ratio of overlapping price levels to all the levels

0
50

10
0

%
-a

ge
 D

ec
re

as
e

In

M
ed

ia
n

La
te

nc
y

Overall
During Bursts

Fig. 10: Benefits are propor-

tional to book depth.

In this experiment, we have 10 market participants (MPs), each

submitting 10k orders per second. Two intermediate proxies, run-

ning LOQ or SimplePQ, relay orders from the MPs to the ME. Only

queue type (LOQ/SimplePQ) changes for performing a comparative

experiment. Order bursts occur, with eachMP increasing their order

submission rate by 20× every 3 s. Bursts lead to queue build-ups at

the proxies, where LOQ/SimplePQ operate. As shown in Figure 9,

unlike SimplqPQ, LOQ gracefully handles bursts: it achieves higher

order matching and lower latency during bursts and leads to low

latency overall. Order matching rate of LOQ goes below that of

SimplePQ in-between the bursts. This behavior is expected because

LOQ is able to process a burst as it occurs while SimplePQ queues

up orders and continues processing them after the burst vanishes,

increasing latencies.

The advantages of LOQ stem from the presence of non-critical

orders, which are kept in the gateways and proxies’ queues longer,

allowing the available resources (network bandwidth and ME’s

capacity) to be used for critical orders. We examine the benefits of

LOQ under different ratios of critical to non-critical orders. In this

experiment, MPs uniformly sample bid/ask prices from a predefined

range to generate orders. We vary the portion of the bid price range

that overlaps with the ask price range. These overlapping segments

result in orders that get matched at ME, while other orders remain

in the LOB. Figure 10 shows that, as the ratio of overlapping price

levels to the total number of levels decreases, the benefit of LOQ

increases. A ratio of 𝑥/𝑦 indicates that there are 𝑦 total price levels

from which MPs sample prices to generate orders, but only 𝑥 price

levels lead to immediate matches at ME. As 𝑦 increases while 𝑥

remains constant, the number of critical orders decreases. We also

plot the metrics for the bursts durations. These are calculated from

the orders matched during the bursts. LOQ identifies critical orders

and prioritizes them for processing by the ME over non-criticals.

Consequently, LOQ demonstrates a 137% increase inME throughput

during bursts and a 70% reduction in latency for matched orders

when 𝑦 = 11. We repeat one experiment and increase MPs from

10 to 1000 with 𝑥 = 1, 𝑦 = 7 and observe that LOQ outperforms

SimplePQ: 90% decrease in the overall latency and 85% increase in

matching rate during bursts.

Using Proxy Tree for Orders Submission: To conduct an ablation

study of the proxy tree’s benefit in the order submission, we run

an experiment without LOQ and sequencer, and measure the num-

ber of packets received per second by the exchange server with

and without a tree. Figure 11 plots the throughput achieved with

100 MPs. 100 MPs send at the cumulative base rate of 100K pack-

ets/second, but create periodic bursts that reach 20× higher than the
base rate. By using the proxy tree, Onyx can improves the overall

throughput by ∼ 22% on average and by ∼ 75% during the bursty

periods.

Sequencing Overhead: We perform an experiment with 100 MPs

(without LOQ) to study the throughput with and without our se-

quencer. We use the same load generator as above and notice an

overall 25% decrease in the throughput of the exchange when using

the sequencer. The throughput is essentially traded-off for improv-

ing inbound fairness by a sequencer. The overhead comes from the

fact that for releasing any single message of a downstream node,

the sequencer has to wait for at-least one higher timestamped mes-

sage from every other downstream node. The speed of the entire

system becomes dependent on the speed of the slowest messages, a

pattern common in many fairness preserving systems [6]. Appen-

dix J further discusses the overhead and presents potential ways to

alleviate it e.g., by using several instances of a sequencer so that

a path to at least one instance has high chances of being free of

latency fluctuations.

Impact of Packet Losses On LOQ: When an order gateway has

a stale mid-price due to packet losses, two cases may happen: (i)

corresponding market participant (MP) does not generate orders

until losses are recovered or (ii) orders are generated based on the

stale information. In the first case, there is no impact of losses on

LOQ or on inbound fairness. However, a type of unfairness exists

in the systems as some MPs are not able to generate orders. This

unfairness is irrespective of LOQ and exists in Onyx as well as all

prior systems including on-premises exchanges.

In the second case, the generated orders by the MPs who have

stale mid-price (and hence, a lower mid-price ID in the correspond-

ing order gateway) will get prioritized over the orders of other MPs

who have the latest mid-price (because the LOQ prioritization tuple

has the mid-price ID as the first element). We study this impact

quantitatively via a simulator.

A simulator allows us to keep all the conditions (loss rate and

message generation timestamps) identical while performing com-

parative experiments i.e., comparing the behavior when employing

LOQ vs. a FIFO. With losses, the output sequence of matched orders

may change while employing LOQ as compared to employing a

FIFO. We measure how much change may appear. Output sequence

0 5 10 15 20 25
Timeline (seconds)

0k

50
0k

10
00

k

Th
ro

ug
hp

ut
 (p

kt
s/

se
c) MPs stop here

`Tree` receives
all pkts

`No Tree`
receives all pktsTree

No Tree

Fig. 11: A tree enhances an exchange’s throughput.

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

0 5 10 15 20 25
Timeline (seconds)

25
0k

50
0k

75
0k10

00
k

Th
ro

ug
hp

ut
 (p

kt
s/

se
c) MPs stop here

`No Seq.` receives
all pkts

`Seq.`
receives all pktsNo Sequencer

Sequencer

Fig. 12: Sequencer has a significant overhead.

when using FIFO is called fifo-seq, while the one with LOQ is called

loq-seq. We define lateness: an order appearing at index 𝑖 in fifo-seq

and at index 𝑗 in the loq-seq has the lateness of |𝑖 − 𝑗 |. We measure

lateness for each order via our simulator. Lateness of 0 is ideal.

Higher lateness represents lower fairness.

The simulation utilizes 100 participants (MPs), each submitting

5K orders per second. The exchange adds mid-price ID to the outgo-

ing messages so an MP with lost packets and hence, stale mid-price

ID will recover the ID once it receives any future message. Figure 13

shows that lateness is proportional to the packet loss rates. For the

usually observed losses (≤ 0.005%), the median lateness is 0, while

90p stays ≤ 3. More details are in Appendix N showing: (i) higher

loss rates lead to higher lateness and, (ii) fewer the clients experi-

encing the losses, lower the lateness. The results convey that small

losses (which are typical of the public cloud) do not introduce un-

fairness to a vast majority of the orders. The impact on the eventual

trading outcomes is specific to the trading strategies employed by

the MPs, we only exhibit here that lateness, although small, may

exist under packet losses.

Remarks on inbound fairness: By design, our sequencer (w/o

LOQ) ensures inbound fairness. One of the assumptions for LOQ to

preserve fairness is that all MPs/gateways infer the mid-price move-

ment simultaneously which is provided with a high probability. Al-

though losses impact inbound fairness, non-simultaneous delivery

has a bigger impact. The probability of achieving inbound fairness

while employing LOQ can only be as high as that of outbound

fairness (simultaneous delivery) which is optimized to 99.9%(§6.5.3).
With receiver hedging, ≈ 0.1% packets lead to non-simultaneous

delivery (§6.5.3) i.e, these packets are delayed enough that hold-and-

release protocol does not meet its deadlines. However, figure 13

shows that even assuming 0.1% losses (i.e., considering all delayed

packets as lost), the impact is small.

6.5 Outbound Communication Techniques

6.5.1 Proxy Hedging.
Reduced overall multicast latency. Figure 14a compares the OML

CDFs under different hedging factors (𝐻 = 0, 1, 2). 𝐻 = 0 represents

the case without proxy hedging. 𝐻 = 1 yields latency reduction

as the CDF curve is shifted to the left. The latency reduction is

marginal as H increases from 1 to 2, as increasing𝐻 has diminishing

returns.

Reduced temporal and spatial latency variance. We calculate the

median OML over a tumbling window of 5K messages to study the

temporal latency variance. Figure 14b shows Onyx exhibits lower

temporal latency variance compared with the non-hedging scheme

(𝐻 = 0). Enhancing temporal predictability, even for short time-

steps, is beneficial for hold-and-release to calculate lower deadlines.

Figure 14c compares the DWS for Onyx with different hedging

factors. Hedging reduces the spatial latency variance (i.e., it shrinks

the DWS of multicast messages). The 99th percentile delivery win-

dow size is ∼350 µs with𝐻 = 0 but ∼150 µs with𝐻 = 1, and slightly

better with 𝐻 = 2.

Appendix H demonstrates (i) temporal latency experienced by

a receiver decreases because of proxy hedging and, (ii) the dollar

cost of proxy hedging is negligible compared to the costs borne by

on-premises exchanges.

6.5.2 RoundRobin Packet Spraying. We evaluate the impact

of RRPS on OML. We utilize a multicast message rate of 10K MPS,

125 receivers and a burst of 1 s occur every 2 s, increasing the MPS

15×. Table 1 shows multicast latency decreases when RRPS is used.

On GCP, we see an OML reduction of ≈ 10%, however, on AWS

the reduction can approach ≈ 70%. With low message rates, the

reduction is not significant: ≤ 5% with message rates ≤ 100𝐾 MPS.

This happens because the inter-packet duration is large enough

that any transient latency spike is not able to impact consecutive

messages so RRPS does not help much by re-routing messages.

RRPS show improvements in OML when message bursts are

introduced as it can distribute the bursts among several network

paths. Without bursts, the OML reduction still happens but is less

than 10% on both AWS and GCP.

6.5.3 Receiver Hedging. Receiver hedging improves OML

(Table 2) and achieves outbound fairness/simultaneous delivery

(i.e., DWS ≤ 1 µs at 99.9𝑝 ,). This technique improves performance

at the cost of one extra VM per MP. Doubling the amount of receiver

VMsmay also increase the number of proxies in the tree as < 𝐷, 𝐹 >

is appropriately tuned.

Setup On AWS On GCP

50p 90p 50p 90p

Improve.

(%)

15.12 69.35 9.83 9.18

Tbl. 1: %-age improvement in OML due to RRPS

𝑁 RH OML (µs)

50𝑝 99𝑝

100 No 139 248

200 No 141 243

100 Yes 99 146

Tbl. 2: Latency impact due to Receiver Hedging (GCP)

6.6 Onyx and DBO

DBO is a recent cloud exchange that achieves fairness regardless

of latency fluctuations and without clock synchronization. It does

so by proposing a new fairness metric that prioritizes orders based

on the response time of traders (i.e., the time to make a trade in

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

0.0
00

0.0
05

0.0
50

0.1
00

0.5
00

Loss Rate (%)

0

5

10

15

20

25

30

35

La
te

ne
ss

90p Lateness
50p Lateness

Fig. 13: Low lateness with low

loss rates. (simulation)

150 200 250 300 350 400
Latency (microseconds)

0

20

40

60

80

100

C
D
F

Onyx , H = 0
Onyx , H = 1
Onyx , H = 2

(a) Hedging reduces OML

0 25 50 75 100 125 150
Time (seconds)

13
0

13
5

14
0

14
5

15
0

O
M

L
(u

s)
 o

ve
r

a
tu

m
bl

in
g

w
in

do
w

 o
f 1

s

Jasper, H = 0
Jasper, H = 1
Jasper, H = 2Onyx
Onyx
Onyx

(b) Low temporal variance

50 100 150 200 250 300 350
Delivery Window Size(microseconds)

0

20

40

60

80

100

C
D

F

Jasper, H = 0
Jasper, H = 1
Jasper, H = 2

Onyx
Onyx
Onyx

(c) Hedging reduces DWS

Fig. 14: Evaluating Proxy Hedging

response to a piece of market data), rather than the time at which

orders were submitted. Onyx can be viewed as a network layer that

is complementary to DBO’s new semantics at the application layer.

In particular, Onyx can help DBO scale out to a large number of

participants in the following three ways. One, Onyx’s low-latency

and scalable multicast tree (and hedging) can help with disseminat-

ing market data in DBO. Two, Onyx’s use of a tree in reverse for

inbound order submission can also help DBO deal with incast-type

conditions during order submissions from a large number of partic-

ipants. Three, because DBO does not enforce simultaneous delivery

of data, DBO has an extra constraint that no MPs should directly

or indirectly talk to each other so that an MP with earlier received

data may not leak it to any other MP as it can violate DBO’s fairness

guarantees. By leveraging Onyx’s simultaneous multicast in DBO,

this constraint can be lifted. Appendix P details its order submission

service’s performance which is lower than Onyx and CloudEx.

7 RELATEDWORK

We have already discussed the recent exchanges (CloudEx [2],

DBO [6]) and overload control schemes [30–32].

Multicast: Prior works on application level multicast [21, 22, 35–

37] mainly focus on finding optimal paths in a network (or overlay

mesh) using cost models for network links that capture heteroge-
neous link bandwidth or latency characteristics. Onyx focuses on

achieving a small latency difference across receivers while balanc-

ing transmission and propagation delays via a tree. Switch-based

multicast [38, 39] is not available to cloud tenants due to scalability

issues [40]. Some clouds provide special offerings for multicast [1]

that is implemented using multiple unicasts and lack performance.

Collective Communication: Collective communication [41–43]

uses overlay trees for broadcast and all-reduce [44], but typically

supports fewer than 100 receivers. For example, Hoplite [41] op-

timizes bandwidth for 10s of nodes using a tree. Onyx focuses

on minimizing latency and variance, handling bursts, and achiev-

ing fairness at scale while not having an aggregation mechanism

for trade orders that could enhance performance via an all-reduce
mechanism.

8 LIMITATIONS & FUTUREWORK

Coarse Fairness Guarantees: If all MPs receive a message within

1 µs of each other, we consider it fairly disseminated. However, in

on-premises exchanges, fairness guarantees are more precise, down

to the level of nanoseconds. Achieving such fairness with Onyx

requires synchronizing the clocks of all receiver VMs with accuracy

better than nanoseconds –a level of precision that current public

cloud technology does not yet provide.

High Order Latencies: As LOQ enables graceful handling of bursts

of orders by keeping the latencies lower than the alternative of using

FIFO queues at proxies, it still has much room for improvement. The

latencies of trade orders, due to bursts, can reach 10s of milliseconds

which is significantly higher than the latencies on the outbound

side (≈ 100 µs). To keep the order latencies bounded, there could

be admission control applied at the order gateways.

LOQ: All orders generated before a mid-price movement gets pro-

cessed before all the orders generated after the mid-price movement

as LOQ has the mid-price ID as the first element in the prioritization

tuple. This is designed to retain inbound fairness, but it trades-off

some potential performance gains. The direction of mid-price move-

ment (left or right) can be taken into account to decide whether

some older orders (with lower mid-price ID) can be de-prioritized

over some newer orders (with high mid-price ID). We have not

explored it and leave it as a future work.

Opportunity to utilize Cloud FPGAs: In on-premises exchanges,

some MPs implement their trading algorithms on FPGA to achieve

low-latency processing. An interesting question is whether FPGA

instances in the cloud [45] can serve the same purpose. In AWS,

FPGAs do not have direct network access; instead, an associated

VM receives the packets and then forwards them to the FPGA. This

raises uncertainty about whether FPGA-based low-latency process-

ing of orders is feasible in such an environment. Similarly, whether

the Onyx proxies can be offloaded to FPGAs is an interesting direc-

tion for enhancing performance.

9 CONCLUSION

This paper introduces Onyx, which provides networking support

for scalable cloud financial exchanges. Onyx systematically opti-

mizes both outbound (market data delivery) and inbound (order

submission) workflows of an exchange system. Our evaluation

shows that Onyx outperforms a prior system CloudEx, in terms

of fairness, throughput, and latency as well as outperforms AWS

TGW-based multicast. This work does not raise any ethical issues.

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

10 ACKNOWLEDGMENTS

We thank Deepak Merugu for help with clock synchronization

agents, Balaji Prabhakar for initial discussions about cloud multi-

cast, Mathew Grosvenor for helpful discussions, and Fabian Ruffy

for providing feedback at various stages of the project. We thank

Daniel Qian for help in writing Appendix I. This work was sup-

ported by NSF grants 2422076, 2019302, NSF CAREER award

(2340748) and a gift from the eBPF foundation and Xilinx.

REFERENCES

[1] Amazon Web Services. Multicast on transit gateways. https://

docs.aws.amazon.com/vpc/latest/tgw/tgw-multicast-overview.html, .

[2] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yilong

Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. Cloudex:

A fair-access financial exchange in the cloud. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, page 96–103, New York, NY,

USA, 2021. Association for Computing Machinery. ISBN 9781450384384. doi:

10.1145/3458336.3465278. URL https://doi.org/10.1145/3458336.3465278.

[3] leptonsys.com. Layer 1 switches: Key functions and technologies. https:

//www.leptonsys.com/blog/layer-1-switches-key-functions-and-technologies.

[4] Junzhi Gong, Yuliang Li, Devdeep Ray, KK Yap, and Nandita Dukkipati. Octopus:

A fair packet delivery service. arXiv preprint arXiv:2401.08126, 2024.
[5] Prateesh Goyal, Ilias Marinos, Eashan Gupta, Chaitanya Bandi, Alan Ross, and

Ranveer Chandra. Rethinking cloud-hosted financial exchanges for response

time fairness. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks,
HotNets ’22, page 108–114, New York, NY, USA, 2022. Association for Computing

Machinery. ISBN 9781450398992. doi: 10.1145/3563766.3564098. URL https:

//doi.org/10.1145/3563766.3564098.

[6] Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Radhika Mittal,

and Ranveer Chandra. Dbo: Fairness for cloud-hosted financial exchanges. In

Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM ’23, page

550–563, New York, NY, USA, 2023. Association for Computing Machinery. ISBN

9798400702365. doi: 10.1145/3603269.3604871. URL https://doi.org/10.1145/

3603269.3604871.

[7] Nasdaq. Nasdaq co-location services, 2024. URL https://www.nasdaqtrader.com/

TRADER.ASPX?ID=COLO. Accessed: 2025-05-20.

[8] Liangcheng Yu, Prateesh Goyal, Ilias Marinos, and Vincent Liu. Cuttlefish:

A fair, predictable execution environment for cloud-hosted financial ex-

changes, November 2024. URL https://www.microsoft.com/en-us/research/

publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-

hosted-financial-exchanges/.

[9] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. Andersen,

Gregory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe and effective fine-

grained tcp retransmissions for datacenter communication. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09,

page 303–314, New York, NY, USA, 2009. Association for Computing Machinery.

ISBN 9781605585949. doi: 10.1145/1592568.1592604. URL https://doi.org/10.1145/

1592568.1592604.

[10] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,

and Amin Vahdat. Exploiting a natural network effect for scalable, fine-grained

clock synchronization. In Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation, NSDI’18, pages 81–94, Berkeley, CA, USA,
2018. USENIX Association. ISBN 978-1-931971-43-0.

[11] CMEGroup. Connectivity options. cmegroup.com/globex/connectivity-options.html.
Accessed: 2024-09-18.

[12] investopedia.com. Matching orders: What they are, how they work, and examples.

https://www.investopedia.com/terms/m/matchingorders.asp. Accessed: 2024-

09-19.

[13] Eurex. Matching principles. https://www.eurex.com/ex-en/trade/order-book-

trading/matching-principles. Accessed: 2025-06-25.

[14] Owen Hilyard, Bocheng Cui, Marielle Webster, Abishek Bangalore Muralikrishna,

and Aleksey Charapko. Cloudy forecast: How predictable is communication

latency in the cloud? arXiv preprint arXiv:2309.13169, 2023.
[15] Vighnesh Sachidananda. Scheduling and autoscaling methods for low

latency applications. https://stacks.stanford.edu/file/druid:xq718qd4043/

Vig_thesis_submission-augmented.pdf. Accessed: 2024-09-19.

[16] CME Group. Cme group and google cloud announce new chicago area

private cloud region and co-location facility for cme group’s markets.

www.cmegroup.com/media-room/press-releases. Accessed: 2024-09-11.
[17] Alexander Osipovich. Google invests 1 billion in exchange giant cme, strikes

cloud deal. https://www.wsj.com/articles/google-invests-1-billion-in-exchange-

giant-cme-strikes-cloud-deal-11636029900. Accessed: 2021-02-02.

[18] a16z. The cost of cloud, a trillion dollar paradox. https://a16z.com/the-cost-of-

cloud-a-trillion-dollar-paradox. Accessed: 2025-01-27.

[19] Andy Myers, Brian Nigito, and Nate Foster. Network design considerations

for trading systems. In Proceedings of the 23rd ACM Workshop on Hot Topics in
Networks, HotNets ’24, page 282–289, New York, NY, USA, 2024. Association for

Computing Machinery. ISBN 9798400712722. doi: 10.1145/3696348.3696890. URL

https://doi.org/10.1145/3696348.3696890.

[20] Muhammad Haseeb, Jinkun Geng, Ulysses Butler, Xiyu Hao, Daniel Duclos-

Cavalcanti, and Anirudh Sivaraman. Poster: Jasper, a scalable and fair multicast

for financial exchanges in the cloud. In Proceedings of the ACM SIGCOMM 2024
Conference: Posters and Demos, ACM SIGCOMM Posters and Demos ’24, page

36–38, New York, NY, USA, 2024. Association for Computing Machinery. ISBN

9798400707179. doi: 10.1145/3672202.3673728. URL https://doi.org/10.1145/

3672202.3673728.

[21] Kianoosh Mokhtarian and Hans-Arno Jacobsen. Minimum-delay multicast algo-

rithms for mesh overlays. IEEE/ACM Transactions on Networking, 23(3):973–986,
2015. doi: 10.1109/TNET.2014.2310735.

[22] G.N. Rouskas and I. Baldine. Multicast routing with end-to-end delay and delay

variation constraints. IEEE Journal on Selected Areas in Communications, 15(3):
346–356, 1997. doi: 10.1109/49.564133.

[23] David G. Andersen, Alex C. Snoeren, and Hari Balakrishnan. Best-path vs. multi-

path overlay routing. In Proceedings of the 3rd ACM SIGCOMM Conference on
Internet Measurement, IMC ’03, page 91–100, New York, NY, USA, 2003. Associa-

tion for Computing Machinery. ISBN 1581137737. doi: 10.1145/948205.948218.

URL https://doi.org/10.1145/948205.948218.

[24] Vighnesh Sachidananda. Scheduling and autoscaling methods for low

latency applications. https://stacks.stanford.edu/file/druid:xq718qd4043/

Vig_thesis_submission-augmented.pdf. Accessed: 2024-01-30.

[25] ASX. Asx trade guide to testing services. https://www.asxonline.com/content/

dam/asxonline/public/documents/asx-trade-refresh-manuals/asxtrade-guide-

to-testing-services.pdf.

[26] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-

backup replication. In Proceedings of the 28th ACM Symposium on Principles of
Distributed Computing, 2009.

[27] Inho Choi, Ellis Michael, Yunfan Li, Dan Ports, and Jialin Li. Hydra: Serialization-

free network ordering for strongly consistent distributed applications. In Pro-
ceedings of the 20th USENIX Conference on Networked Systems Design and Imple-
mentation, 2023.

[28] CMAK:Cluster Manager for Apache Kafka. https://github.com/yahoo/CMAK.

Accessed: 2021-02-02.

[29] Apache Software Foundation. Zookeeper. https://zookeeper.apache.org.

[30] BehnamMontazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa:

a receiver-driven low-latency transport protocol using network priorities. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 221–235, New York, NY, USA, 2018. Association

for Computing Machinery. ISBN 9781450355674. doi: 10.1145/3230543.3230564.

URL https://doi.org/10.1145/3230543.3230564.

[31] Inho Cho, Ahmed Saeed, Seo Jin Park, Mohammad Alizadeh, and Adam Belay.

Protego: Overload control for applications with unpredictable lock contention. In

20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
23), pages 725–738, Boston, MA, April 2023. USENIX Association. ISBN 978-1-

939133-33-5. URL https://www.usenix.org/conference/nsdi23/presentation/cho-

inho.

[32] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and

Adam Belay. Overload control for µs-scale RPCs with breakwater. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
299–314. USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL

https://www.usenix.org/conference/osdi20/presentation/cho.

[33] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data

center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-
COMM ’10, page 63–74, New York, NY, USA, 2010. Association for Comput-

ing Machinery. ISBN 9781450302012. doi: 10.1145/1851182.1851192. URL

https://doi.org/10.1145/1851182.1851192.

[34] Amazon Web Services. Quotas for your transit gateways. https://

docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-quotas.html, .

[35] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable

application layer multicast. SIGCOMM Comput. Commun. Rev., 32(4):205–217,
aug 2002. ISSN 0146-4833. doi: 10.1145/964725.633045. URL https://doi.org/

10.1145/964725.633045.

[36] M. Parsa, Qing Zhu, and J.J. Garcia-Luna-Aceves. An iterative algorithm for delay-

constrained minimum-cost multicasting. IEEE/ACM Transactions on Networking,
6(4):461–474, 1998. doi: 10.1109/90.720901.

[37] Yang hua Chu, S.G. Rao, S. Seshan, and Hui Zhang. A case for end system

multicast. IEEE Journal on Selected Areas in Communications, 20(8):1456–1471,
2002. doi: 10.1109/JSAC.2002.803066.

[38] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast scheduling for input-queued

switches. IEEE Journal on Selected Areas in Communications, 15(5):855–866, 1997.
doi: 10.1109/49.594847.

https://docs.aws.amazon.com/vpc/latest/tgw/tgw-multicast-overview.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-multicast-overview.html
https://doi.org/10.1145/3458336.3465278
https://www.leptonsys.com/blog/layer-1-switches-key-functions-and-technologies
https://www.leptonsys.com/blog/layer-1-switches-key-functions-and-technologies
https://doi.org/10.1145/3563766.3564098
https://doi.org/10.1145/3563766.3564098
https://doi.org/10.1145/3603269.3604871
https://doi.org/10.1145/3603269.3604871
https://www.nasdaqtrader.com/TRADER.ASPX?ID=COLO
https://www.nasdaqtrader.com/TRADER.ASPX?ID=COLO
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://www.microsoft.com/en-us/research/publication/cuttlefish-a-fair-predictable-execution-environment-for-cloud-hosted-financial-exchanges/
https://doi.org/10.1145/1592568.1592604
https://doi.org/10.1145/1592568.1592604
https://www.investopedia.com/terms/m/matchingorders.asp
https://www.eurex.com/ex-en/trade/order-book-trading/matching-principles
https://www.eurex.com/ex-en/trade/order-book-trading/matching-principles
https://stacks.stanford.edu/file/druid:xq718qd4043/Vig_thesis_submission-augmented.pdf
https://stacks.stanford.edu/file/druid:xq718qd4043/Vig_thesis_submission-augmented.pdf
https://www.wsj.com/articles/google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-11636029900
https://www.wsj.com/articles/google-invests-1-billion-in-exchange-giant-cme-strikes-cloud-deal-11636029900
https://a16z.com/the-cost-of-cloud-a-trillion-dollar-paradox
https://a16z.com/the-cost-of-cloud-a-trillion-dollar-paradox
https://doi.org/10.1145/3696348.3696890
https://doi.org/10.1145/3672202.3673728
https://doi.org/10.1145/3672202.3673728
https://doi.org/10.1145/948205.948218
https://stacks.stanford.edu/file/druid:xq718qd4043/Vig_thesis_submission-augmented.pdf
https://stacks.stanford.edu/file/druid:xq718qd4043/Vig_thesis_submission-augmented.pdf
https://www.asxonline.com/content/dam/asxonline/public/documents/asx-trade-refresh-manuals/asxtrade-guide-to-testing-services.pdf
https://www.asxonline.com/content/dam/asxonline/public/documents/asx-trade-refresh-manuals/asxtrade-guide-to-testing-services.pdf
https://www.asxonline.com/content/dam/asxonline/public/documents/asx-trade-refresh-manuals/asxtrade-guide-to-testing-services.pdf
https://github.com/yahoo/CMAK
https://zookeeper.apache.org
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi23/presentation/cho-inho
https://www.usenix.org/conference/nsdi23/presentation/cho-inho
https://www.usenix.org/conference/osdi20/presentation/cho
https://doi.org/10.1145/1851182.1851192
https://docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-quotas.html
https://docs.aws.amazon.com/vpc/latest/tgw/transit-gateway-quotas.html
https://doi.org/10.1145/964725.633045
https://doi.org/10.1145/964725.633045

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

[39] Ming-Huang Guo and Ruay-Shiung Chang. Multicast atm switches: survey and

performance evaluation. SIGCOMM Comput. Commun. Rev., 28(2):98–131, apr
1998. ISSN 0146-4833. doi: 10.1145/279345.279352. URL https://doi.org/10.1145/

279345.279352.

[40] Muhammad Shahbaz, Lalith Suresh, Jennifer Rexford, Nick Feamster, Ori Rot-

tenstreich, and Mukesh Hira. Elmo: source routed multicast for public clouds.

In Proceedings of the ACM Special Interest Group on Data Communication, SIG-
COMM ’19, page 458–471, New York, NY, USA, 2019. Association for Com-

puting Machinery. ISBN 9781450359566. doi: 10.1145/3341302.3342066. URL

https://doi.org/10.1145/3341302.3342066.

[41] Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric Liang, Robert

Nishihara, Philipp Moritz, and Ion Stoica. Hoplite: Efficient and fault-tolerant

collective communication for task-based distributed systems. In Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page 641–656, New

York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383837.

doi: 10.1145/3452296.3472897. URL https://doi.org/10.1145/3452296.3472897.

[42] Liangyu Zhao and Arvind Krishnamurthy. Bandwidth optimal pipeline schedule

for collective communication, 2023.

[43] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Jason Fantl, Prith-

wish Basu, Joud Khoury, and Arvind Krishnamurthy. Efficient direct-connect

topologies for collective communications, 2023.

[44] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for

clusters of workstations. J. Parallel Distrib. Comput., 69(2):117–124, feb 2009.

ISSN 0743-7315. doi: 10.1016/j.jpdc.2008.09.002. URL https://doi.org/10.1016/

j.jpdc.2008.09.002.

[45] AWS. Amazon ec2 f1 instances. https://aws.amazon.com/ec2/instance-types/f1/.

Accessed: 2024-02-09.

[46] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. Ernest: Efficient performance prediction for Large-Scale advanced

analytics. In 13th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 16), pages 363–378, Santa Clara, CA, March 2016. USENIX

Association. ISBN 978-1-931971-29-4. URL https://www.usenix.org/conference/

nsdi16/technical-sessions/presentation/venkataraman.

[47] Vasilios Mavroudis and Hayden Melton. Libra: Fair order-matching for electronic

financial exchanges, 2019.

[48] Piotr J. Gmytrasiewicz and Edmund H. Durfee. Decision-theoretic recursive mod-

eling and the coordinated attack problem. In Proceedings of the First International
Conference on Artificial Intelligence Planning Systems, page 88–95, San Francisco,

CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 155860250X.

[49] Intel. Dpdk programmer’s guide: Ring library. https://doc.dpdk.org/guides/

prog_guide/ring_lib.html. Accessed: 2024-01-31.

[50] Jianling Wang, Vivek George, Tucker Balch, and Maria Hybinette. Stockyard: a

discrete event-based stock market exchange simulator. In Proceedings of the 2017
Winter Simulation Conference, WSC ’17. IEEE Press, 2017. ISBN 9781538634271.

[51] Signals Jane Street and Threads. Multicast and the markets. https://

signalsandthreads.com/multicast-and-the-markets/.

[52] Google Cloud. View google cloud packet loss - performance dash-

board. https://cloud.google.com/network-intelligence-center/docs/performance-

dashboard/how-to/view-google-cloud-packet-loss, 2024. Accessed: 2025-05-19.

[53] GitHub. Performance in terms of PPS. https://github.com/amzn/amzn-drivers/

issues/68.

[54] Philipp Winter, Ralph Giles, Moritz Schafhuber, and Hamed Haddadi. Nitriding:

A tool kit for building scalable, networked, secure enclaves, 2023. URL https:

//arxiv.org/abs/2206.04123.

[55] Legal Information Institute. Protection of nonpublic personal information. https:

//www.law.cornell.edu/uscode/text/15/6801. Accessed: 2024-09-19.

[56] iex. The cost of exchange services. https://finansdanmark.dk/media/mstbpq23/

iex-and-market-data-cost-2019.pdf. Accessed: 2024-09-19.

[57] coinbase.com. Buy and sell bitcoin, ethereum and more with trust.

https://www.coinbase.com. Accessed: 2024-09-19.
[58] binance.com. Crypto trading platform. https://www.binance.com. Accessed:

2024-09-19.

[59] Nasdaq.com. Nasdaq and aws partner to transform capital markets.

https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-

transform-capital-markets-2021-12-01. Accessed: 2024-01-26.

Note: Appendices are supporting material that has not been

peer-reviewed.

A DECIDING D AND F FOR MULTICAST TREE

To understand how the end-to-end latency varies as 𝐷 and 𝐹 grow,

we conduct a series of (almost 40) experiments with various num-

bers of receivers (𝑁 = 10, 100, 1000). Table 3 displays the latencies

for different configurations of <𝐷, 𝐹> for a given number (𝑁) of

receivers. We see that the latency yields the minimum at differ-

ent depths 𝐷 for different values of 𝑁 . At a small scale (𝑁 = 10),

increasing 𝐷 does not bring latency benefits. As the scale grows

from 𝑁 = 10 to 𝑁 = 100, 1000, the benefits of increasing 𝐷 while

reducing 𝐹 grow because the reduced message replication delay and

transmission delay outweigh the added overhead of new hops in the

path of messages. However, as 𝐷 goes beyond a certain threshold

(e.g., 𝐷 grows larger than 3 when 𝑁 = 1000), the latency no longer

decreases but rises up. Based on our experiments, we find fixing

𝐹 = 10 usually leads to a desirable 𝐷 to generate a multicast tree

with low latency. As a result, we establish our heuristic rule to con-

struct the multicast tree as follows: Given 𝑁 receivers, we fix 𝐹 = 10

and then derive 𝐷 = [𝑙𝑜𝑔10𝑁] (round to the nearest integer). We

also tested a more sophisticated alternative mechanism described

in [46], and observe no significant performance boost compared to

our heuristic.

In our testing, the variance in cloud-host VM performance [24]

imposes the great challenge to differentiate the “optimal” 𝐷 and

𝐹 from the values generated by the aforementioned heuristic. We

observe through repeated experimentation that minor changes in

𝐷 and 𝐹 do not show a significant performance difference with

high statistical confidence. So it is sufficient to select 𝐷 and 𝐹 in

the neighborhood of the optimal value, which is why our heuristic

is effective. We further find that a unit increment in 𝐷 comes at the

added latency of 30±10𝜇𝑠 and a unit increment in 𝐹 adds 2.7±0.9𝜇𝑠
per layer.

8
A tree constructed using linear models based on these

unit increments performs comparably to the tree constructed using

our heuristic of maintaining 𝐹 close to 10 and 𝐷 = [𝑙𝑜𝑔10𝑁]. Here
we use two examples to illustrate how our approach decides the tree

structure: For 𝑁 = 100, 𝐹 = 10, 𝐷 would be 2. For 𝑁 = 200, 𝐹 = 10,

𝐷 would still be 2 and 𝐹 would need to be adjusted accordingly to

support all 200 receivers. So 𝐹 would come around to be be 14 as

14
2 ≈ 200.

B SCALABLE SIMULTANEOUS DELIVERY

Financial trading needs to ensure the fairness of the competition.

Fairness in data delivery [2, 4] means that the market data from the

exchange server should be delivered to every MP at the same time

so that an MP may not gain an advantage over the others during

the competition. While there are also some recent works trying to

alter the definition of fairness [6, 47], these variant definitions still

need more research before they can be confidently adopted by the

exchanges. Therefore, Onyx uses the original definition of fairness

employed by on-premise financial exchanges: the fair delivery of

data means simultaneous delivery of market data to all the multicast

receivers.

Realizing perfect simultaneous data delivery to multiple receivers
is theoretically unattainable [48]. Nevertheless, Onyx tries to em-

pirically minimize the spatial (i.e., across receivers) variance of the

latency of messages. Our hedging design (§4.2) has created favor-

able conditions to minimize the spatial variance. By using hedging,

Onyx can achieve consistently low variance for each receiver over

time, and the spatial latency variance across receivers is kept low.

Beyond this, we employ a hold-and-release mechanism (by using

8
Using our high-performance implementation on a c5.2xlarge VM in AWS. Message

size is 460B.

https://doi.org/10.1145/279345.279352
https://doi.org/10.1145/279345.279352
https://doi.org/10.1145/3341302.3342066
https://doi.org/10.1145/3452296.3472897
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1016/j.jpdc.2008.09.002
https://aws.amazon.com/ec2/instance-types/f1/
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://doc.dpdk.org/guides/prog_guide/ring_lib.html
https://doc.dpdk.org/guides/prog_guide/ring_lib.html
https://signalsandthreads.com/multicast-and-the-markets/
https://signalsandthreads.com/multicast-and-the-markets/
https://cloud.google.com/network-intelligence-center/docs/performance-dashboard/how-to/view-google-cloud-packet-loss
https://cloud.google.com/network-intelligence-center/docs/performance-dashboard/how-to/view-google-cloud-packet-loss
https://github.com/amzn/amzn-drivers/issues/68
https://github.com/amzn/amzn-drivers/issues/68
https://arxiv.org/abs/2206.04123
https://arxiv.org/abs/2206.04123
https://www.law.cornell.edu/uscode/text/15/6801
https://www.law.cornell.edu/uscode/text/15/6801
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

(a) N=10

D F OML

1 10 66

2 4 88

(b) N=100

D F OML

1 100 351

2 10 139

3 5 141

(c) N=1000

D F OML

2 32 282

3 10 217

4 6 226

Tbl. 3:Median values of overall multicast latency (OML), in µs, for different depth (𝐷), fanout (𝐹), and receivers (𝑁).

synchronized clocks) to eliminate the residual spatial variance at

the end hosts and enforce simultaneous delivery across receivers.

The hold-and-release mechanism was introduced by CloudEx [2]

but it does not scale well and leads to high end-to-end latency (§6.2).

We describe a modified hold-and-release mechanism that helps us

scale further, while maintaining a low end-to-end multicast latency.

Hold & Release mechanism. To implement the hold-and-release
mechanism, Onyx leverages the accurate clock synchronization

algorithm, Huygens [10], to synchronize the clocks among the

sender and receivers. Receivers keep track of the one-way delay

(OWD) of the messages received from the sender. Each receiver

takes the 95th percentile of its OWD records at regular intervals

and sends the results back to the sender using an all-reduce mecha-

nism explained later. The sender calculates the maximum of these

OWDs called Global OWD for messages using the gathered statis-

tics: OWDG = maxi (OWDi) where OWDi is the OWD estimate

reported by the 𝑖-th multicast receiver.

Once an OWDG has been calculated by the multicast sender, it

attaches deadlines to all outgoing messages. A deadline is calculated

by adding OWDG to the current timestamp when sending a mes-

sage. Upon receiving a message, a receiver does not process it until

the current time is equal to (or exceeds) the message’s deadline.

This mechanism leads to almost simultaneous delivery, modulo

clock sync error. In §G, we discussed possible security mechanisms

to ensure that a receiver (an MP) waits until its deadline to process

a message, while it’s in the MP’s self interest to act immediately

without waiting.

Deadlines all-reduce. In the design of Onyx’s hold-and-release
mechanism, all the receivers need to send back the estimates of

OWDs they experience to the sender so that the sender can estimate

the deadlines for the subsequent messages to multicast. However, if

all the receivers send their estimated OWDs directly to the sender,

incast congestion occurs at the sender, leading to increased mes-

sage drops. To avoid the high volume of incast traffic, we reuse

the multicast tree to aggregate the OWD estimates in an all-reduce

manner [44]. Specifically, each receiver periodically sends its OWD

estimate to its parent proxy. Since each proxy has a limited number

of children, we do not risk in-cast congestion here. Each proxy (i)

continuously receives estimates from its children; (ii) periodically

takes the maximum of all the received estimates, ignoring some

children OWDs if they have not yet sent in an estimate; and (iii)

sends the max value to its parent proxy. In this way, the sender at

the root calculates deadlines for messages only according to the

aggregated estimates from the first proxy layer rather than all the

receivers.

C PROXY HEDGING ANALYSIS VIA MONTE

CARLO

When proxy hedging is enabled, we model the latency experienced

by a receiver as follows.

We use function L(𝑎, 𝑏) to represent the latency from node 𝑎 to

node 𝑏. We use 𝑆 to represent the root node (i.e., the sender) in

Figure 2, and 𝑃
𝑗
𝑖
to represent the node 𝑖 (i.e, a proxy or a receiver)

in Layer 𝑗 . Then, given a node 𝑃𝑛
𝑖
, the end-to-end latency from the

root sender to this node can be recursively defined as the following

random variable (U denotes uniform random distribution):

L(𝑆, 𝑃𝑛𝑖) = min

0≤ 𝑗≤𝐻

{
L(𝑆, 𝑃𝑛−1(⌊𝑖/𝐹 ⌋− 𝑗)) + L(𝑃

𝑛−1
(⌊𝑖/𝐹 ⌋− 𝑗) , 𝑃

𝑛
𝑖)

}
∀𝑖, 𝑗 : L(𝑆, 𝑃0𝑖) ∼ U and L(𝑃𝑛−1𝑖 , 𝑃𝑛𝑗) ∼ U

Each L(𝑃𝑛−1
𝑖

, 𝑃𝑛
𝑗
) is assumed to be independent and identically

distributed (IID). However, the latency is impacted by the order in

which a parent proxy sends out the messages. This happens because

of the replication and the transmission delay of sending messages.

If the number of downstream nodes for a proxy is small, we can

ignore this order in the model. Let’s assume L(𝑃𝑛−1
𝑖

, 𝑃𝑛
𝑗
) to be IID.

Later, we discuss the effect of non-IID latencies.

Achieving a low variance of L(𝑆, 𝑃𝑛
𝑖
) wouldmean that the latency

over time does not deviate much from the expected value, which

helps to achieve consistent latency over time. It also indicates that

different VMs (at the same level of the tree) in Onyx do not experi-

ence latency significantly different from each other, which narrows

the gap between the maximum and minimum latency experienced

among all the receivers for a multicast message.

We run a Monte Carlo simulation of L(𝑆, 𝑃𝑛
𝑖
) random variable

with different values of 𝐻 and 𝐷 to understand its behavior. The

simulation is run for 100k iterations. Based on the simulation results

(Figure 15), we have three main takeaways.

No Hedging ≈ High Latency Variance: With no hedging, the

depth of a tree and latency variance are directly correlated. Figure

15a plots the CDF for L(𝑆, 𝑃𝑛
𝑖
) and showsmean value 𝜇 and standard

deviation 𝜎 for different configurations of the multicast tree. As 𝐷

grows larger, we see both 𝜇 and 𝜎 increase distinctly, indicating

that just a proxy tree (i.e., no hedging) suffers from more latency

variance when the tree scales up.

Hedging ≈ Low Latency Variance: Our hedging makes the

correlation between 𝐷 and 𝜎 become less significant. In Figure 15b,

we can see the latency distribution becomes narrow (i.e., reduced

𝜎) as 𝐻 grows from 0 to higher values.

Low Overall Latency & Diminishing Returns on 𝐻 : In Fig-

ure 15c, we fix 𝐷 and keep increasing 𝐻 . Figure 15c shows that

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

0 1 2 3 4
Random Variable Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H=0, D=1, μ=0.5, σ=0.3
H=0, D=2, μ=1.0, σ=0.4
H=0, D=3, μ=1.5, σ=0.5
H=0, D=4, μ=2.0, σ=0.6
H=0, D=5, μ=2.5, σ=0.6

(a) With no hedging, the depth of a tree

makes the latency and its variance worse.

0.0 0.5 1.0 1.5
Random Variable Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H=4, D=1, μ=0.5, σ=0.3
H=4, D=2, μ=0.5, σ=0.2
H=4, D=3, μ=0.6, σ=0.2
H=4, D=4, μ=0.7, σ=0.2
H=4, D=5, μ=0.7, σ=0.2

(b) Hedging limits the impact of depth on

the latency and its variance.

1 2 3 4
Random Variable Value

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H=0, D=4, μ=2.0, σ=0.6
H=1, D=4, μ=1.3, σ=0.4
H=2, D=4, μ=0.9, σ=0.3
H=3, D=4, μ=0.8, σ=0.2
H=4, D=4, μ=0.7, σ=0.2

(c) For a fixed depth, increasing H improves

the latency and its variance.

Fig. 15: Analyzing VM Hedging. A Monte Carlo simulation with 100k iterations was used.

hedging not only reduces the latency variance (i.e., the distribution

becomes narrower), but it also helps to reduce the overall latency

(i.e., the distribution moves leftwards). However, as 𝐻 grows larger,

the incremented performance gains diminish, and most perfor-

mance improvement is obtained when 𝐻 grows from 0 to 1. It

shows that a small value of 𝐻 (>0) is enough to reap the benefits of

VM hedging. This is useful because a small 𝐻 saves bandwidth.

Non-IID Latencies:When the latencies of different links depend

on one another, proxy hedging still reduces latency effectively.

However, the reduction effect is inversely proportional to how

much links’ latencies depend on each other.

We define direct links as links that go from parents to their own

children and hedging links as links that go from aunts to their nieces.

For a given node, we have outgoing hedging links’ latencies depend

on a single outgoing direct link’s latency. Assuming 𝐶 is the set of

a proxy 𝑝’s children, 𝐸 is the set of 𝑝’s nieces, formally, we have:

L(𝑃𝑛𝑝 , 𝑃𝑛+1𝑐) ∼ U, i.i.d for 𝑐 ∈ 𝐶
𝜀 (𝑃𝑛𝑝 , 𝑃𝑛+1𝑒) ∼ U, i.i.d for 𝑒 ∈ 𝐸

L(𝑃𝑛𝑝 , 𝑃𝑛+1𝑒) = 𝑔
(
L(𝑃𝑛𝑝 , 𝑃𝑛+1𝑐), 𝜀 (𝑃𝑛𝑝 , 𝑃𝑛+1𝑒)

)
where 𝜀 (𝑃𝑛𝑝 , 𝑃𝑛+1𝑒) is the base latency of link from 𝑝 to 𝑒 and 𝑔 is

a deterministic transformation function. For simplicity, we model 𝑔

as a linear function. Thus, we have:

L(𝑃𝑛𝑝 , 𝑃𝑛+1𝑒) = 𝛼L(𝑃𝑛𝑝 , 𝑃𝑛+1𝑐) + 𝜀 (𝑃𝑛𝑝 , 𝑃𝑛+1𝑒)
where 𝛼 represents the dependency factor: how correlated the

hedging links are with the direct link.

We first analyzed (by running a Monte-Carlo simulation with

the random variables above) how dependency affects the overall

performance with a similar setup as the IID case. In Figure 16, as the

correlation among links (𝛼) increases, the hedging links get more

affected by the direct link, we can see that the overall performance

decreases. However, the benefit of hedging still exists even with

highly correlated links (𝛼 = 800%). As 𝛼 →∞, the overall latency
approaches that of 𝐻 = 0 i.e., the latency benefit vanishes.

Next we experimented with how different 𝐻 performs under

a fixed dependency factor of 100%. In Figure 17, increasing 𝐻 de-

creases latency. Overall, the trend is consistent with the IID case,

but the absolute benefits diminish.

0 1 2 3
Latency (D=4)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H=0
H=3, α=0%
H=3, α=50%
H=3, α=200%
H=3, α=800%

Fig. 16: Benefits diminish

as links’ correlation (𝛼) in-

creases.

0 1 2 3
Latency (α=100%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

H=0
H=1
H=2
H=3
H=4

Fig. 17: With a fixed 𝛼 , in-

creasing H improves the per-

formance.

D OPTIMIZATIONS FOR HIGH THROUGHPUT

Decoupling DPDK Tx/Rx processing: In the outbound direction

of Onyx, we leverage DPDK to bypass the kernel and multicast

market data in low latency.We adopt the high-performance lockless

queue [49] provided by DPDK to decouple the Tx/Rx processing

logic. On each 8-core proxy VM in Onyx, we allocate one core (i.e.,

one polling thread) for Rx and 6 cores for Tx (while 1 core is reserved

for logging/monitoring processes). The Rx thread keeps polling

the virtual NIC to fetch the incoming messages and dispatch each

message to one Tx thread via the lockless queue, which continues

to replicate and forward the messages.

Minimizing packet replication overheads: When a Tx thread is

replicating the message, instead of creating 𝐹 packets with each

containing one complete copy of the message, we use a zero-copy

message replication technique. For each packet, we remove the

first few bytes that contain Ethernet and IP header and then in-

voke 𝑟𝑡𝑒_𝑝𝑘𝑡𝑚𝑏𝑢𝑓 _𝑐𝑙𝑜𝑛𝑒 () API to make several shallow copies of

the packet, equal to the number of downstream nodes of a proxy.

We allocate small buffers for new Ethernet and IP headers (from

pre-allocated memory pools) and attach each pair of these buffers

to one shallow copy created previously. Then we configure the

headers (i.e., writing the appropriate destination addresses) and use

𝑟𝑡𝑒_𝑒𝑡ℎ_𝑡𝑥_𝑏𝑢𝑟𝑠𝑡 () API to send the packets out.

Parallelizing multiple multicast trees: To further improve the

throughput, we inherit the sharding idea used by CloudEx [2].

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Since each piece of market data is associated with one trading sym-

bol (e.g., $MSFT, $AAPL, $AMD), we can employ multiple trees

in parallel to multicast the market data associated with different

symbols. In this way, Onyx’s throughput scales horizontally by

adding more multicast trees.

E RECEIVER HEDGING STATE

SYNCHRONIZATION

E.1 Design

In receiver hedging, we employ multiple VMs to run the same

logic for one MP, so these VMs generate and submit the same

orders to the exchanges. Exchanges employ an order de-duplication

mechanismwhere every order carries a unique identifier (e.g., Order

Token in Ouchv4.2, UserRefNum in Ouchv5.0 order submission

protocols [50]), used by the exchange to discard duplicate orders.

Thus, the identical orders generated from both receiver VMs will

not be executed twice by the exchanges.

One natural concern is: what if one VM experiences multicast

packet drops? This could cause the two VMs of an MP to diverge

in state, potentially issuing inconsistent orders. To address this

issue, we incorporate a state synchronization protocol to detect and

resolve such inconsistency.

State Synchronization: Each order gateway, residing in receiver

VMs, ensures that multicast packets are seen by the trading pro-

grams in the order of their sequence numbers attached by the

exchange. Any lost packet can be identified by a missing sequence

number and a retransmission (termed as rewinding in market data

protocols [25, 51]) can be requested from a packet rewinder service.

This ensures that each order generated by a VMmaps to a complete

prefix of multicast market data packets.

As prefixes will be identical at both receiver VMs, identical orders

will be issued by the VMs of an MP as long as the trading algorithms

are employed in an identical order by both VMs. As each MP may

want to usemultiple algorithms to processmarket data and generate

multiple orders, we require the algorithms to be executed in an

ordered sequence, identically at both VMs.

With the above mechanism, one VM’s multicast prefix may lag

behind the other VM in the event of packet losses, but a VM will
never issue an order that the other VM wouldn’t or already has not is-
sued. A proof is presented in Appendix §E.2. Each VM calculates the

unique order identifier based on the used multicast prefix, trading

algorithm and the identifier of MP, and the unique order identifier

will be used by exchanges to conduct order deduplication.

E.2 Proof

For completeness, we provide a proof here.

Lemma E.1. Let two receiver VMs, 𝑅1 and 𝑅2, belong to the same
market participant (MP). Suppose the following conditions hold:

(1) Market data messages are delivered over an unreliable channel
(e.g., UDP) and are annotated with sequence numbers.

(2) Each VM generates orders only upon receiving a complete

prefix of market data messages up to some sequence number 𝑖
(i.e., no gaps in [𝑀1, 𝑀2, . . . , 𝑀𝑖]).

(3) Each VM executes a fixed, ordered list of deterministic trading
algorithms A1,A2, . . . ,A𝑘 over each complete prefix, and
may emit exactly one order per algorithm per prefix. Orders
are allowed to be empty.

(4) Each emitted order is tagged with a unique token computed
as a hash of the market data prefix, the trading algorithm
identity, and the MP ID.

Then, the sequence of order tokens generated by 𝑅1 and 𝑅2 is identical.
One VMmay lag behind the other in emitting orders, but the sequences
will never diverge.

Proof. We prove that the sequences of emitted order tokens by

𝑅1 and 𝑅2 are identical by induction on the sequence of complete

prefixes and the fixed order of trading algorithms applied to them.

Let 𝑃𝑖 = [𝑀1, 𝑀2, . . . , 𝑀𝑖] denote the 𝑖-th complete prefix of

market data messages, and let A 𝑗 be the 𝑗-th trading algorithm in

the fixed ordered list. We define a deterministic order generation

slot as the pair (𝑃𝑖 ,A 𝑗).
Let 𝑂

(1)
𝑖, 𝑗

and 𝑂
(2)
𝑖, 𝑗

denote the orders generated by 𝑅1 and 𝑅2,

respectively, for the pair (𝑃𝑖 ,A 𝑗). We aim to show:

∀𝑖, 𝑗, 𝑂
(1)
𝑖, 𝑗

= 𝑂
(2)
𝑖, 𝑗

or, if only one of the VMs has seen 𝑃𝑖 at a given time, the other will

produce the same order once it catches up i.e., the other VM also

sees 𝑃𝑖 .

We proceed by induction on (𝑖, 𝑗) in lexicographic order:

Base case: For (𝑖 = 1, 𝑗 = 1), suppose 𝑅1 receives 𝑃1 first. It

applies A1 and emits 𝑂
(1)
1,1

with a token computed as a hash of

(𝑃1,A1,MP ID). Once 𝑅2 receives 𝑃1, it performs the same com-

putation deterministically and emits 𝑂
(2)
1,1

= 𝑂
(1)
1,1

with the same

token. The sequences are aligned.

Inductive step: Assume for all (𝑖′, 𝑗 ′) < (𝑖, 𝑗), the order tokens
emitted by 𝑅1 and 𝑅2 are identical. Consider (𝑖, 𝑗):

(i) If both VMs have received 𝑃𝑖 , then both applyA 𝑗 to the same

input using the same deterministic logic. Therefore:

𝑂
(1)
𝑖, 𝑗

= 𝑂
(2)
𝑖, 𝑗

(ii) If only one VM (say 𝑅1) has received 𝑃𝑖 , then only 𝑅1 is

allowed to emit 𝑂
(1)
𝑖, 𝑗

; 𝑅2 emits nothing yet. But once 𝑅2 receives

𝑃𝑖 , it computes the same 𝑂
(2)
𝑖, 𝑗

= 𝑂
(1)
𝑖, 𝑗

. Hence, the sequence at 𝑅2

extends to match 𝑅1’s.

Therefore, the emitted sequences are either equal at each point,

or one is a strict prefix of the other. They will eventually converge

to the same full sequence.

Conclusion: The two VMs produce the same sequence of orders,

possibly at different times, but never diverging. □

F MULTICAST PACKET LOSSES

We employ c2d-highcpu-8 instances to run a 60-minute bench-

mark test (with 100 receivers) on GCP.We observe very small packet

losses while multicasting at the rate of 175K messages per second

(MPS). With 175K MPS, the exchange and each proxy VM sends

out 175K*10=1.75 Million packets per second). Figure 18 shows that

total packet losses over the entire duration of the experiment do

not increase beyond 0.005% while the maximum losses observed

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

0 20 40 60 80 100
Participant ID

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ss

 R
at

e
(%

)

Total Loss Rate (%)
Peak Loss Rate (%)

0 10 20 30 40 50
Participant ID

0.00

0.01

0.02

0.03

0.04

0.05
Receiver Hedging Total Loss Rate (%)
Receiver Hedging Peak Loss Rate (%)

Fig. 18: Packet Losses are low in the public cloud. Left (without any of our redundancy techniques) and right (with receiver

hedging) plots show the peak loss rate as well as total losses.

over any 1-minute duration (peak loss rate) are around 0.045% even

without any hedging technique. Both total losses and peak loss rate

decrease significantly if receiver hedging is utilized. Our results

align with the statistics reported by GCP’s Global Performance

Dashboard [52]. The dashboard reports 0.00262% packet-loss in the

us-east4-c region for all VM-to-VM communication over a 7-day

period while the peak loss rate (per minute) stayed at ≤ 0.0174%.

On AWS, using c5.2xlarge instances, we observe slightly

higher packet losses: 0.008% lost packets with a multicast rate of

10K MPS and 1.7% lost packets with a rate of 100K MPS. For AWS,

we suspect that the increased losses are due to the packet per second

quotas implemented by AWS [53].

G ONYX TRUST MODELS

In an ideal trust model, an exchange wouldn’t need to rely on MPs

to adhere to protocols like accurately time-stamping trade orders or

withholding market data processing until a set deadline to ensure

fairness. Likewise, MPs wouldn’t have to disclose their trading

algorithms to the exchange. These guarantees should be achieved

without incurring any performance overhead, such as increased

latency or reduced throughput.

An ideal model should not introduce any jitter for packets going
from the hold-and-release (the exchange’s program to delay release

of market data) to MPs’ trading algorithms. Fairness is achieved

at the level of the hold-and-release program using CloudEx’s time

synchronizationmechanisms, which Onyx also leverages. To ensure

fairness at the level of trading algorithms, there should be a constant

latency between the exchange program and the trading algorithm.

Achieving this ideal model is impractical due to the tension between

security and performance that we present. We propose three trust

models (Fig. 19), discuss their respective trade-offs, and offer our

recommendation.

Model 1: MPs give their programs to the exchange. Exchange con-
trols the VMs where the MPs’ trading programs run. The exchange

runs hold-and-release mechanism in these VMs and then forwards

the multicast messages to the MPs’ programs. No significant la-

tency or throughput overhead is incurred. The jitter between the

exchange’s program and the MP’s program can be minimized to

Enclave

Multicast MsgMulticast Msg

Receiver VM
Receiver VMReceiver VM

Multicast Msg

Hold-n-release

MP's program

Model 1 Model 2 Model 3

{50, 10+}{<1, <1} {50, <10}

MP's program MP's program

Gateway VM
Hold-n-release

func. call vsocknetwork
i/o

Hold-n-release
Parent

Fig. 19: Architectures corresponding to each trust model. Dot-

ted arrows represent messages going from an exchange’s

programs to an MP’s program where the type of message is

represented on the left side and {𝑎, 𝑏} denotes 𝑎 µs of latency

and 𝑏 µs of jitter for messages.

be negligible (≤1 µs) as forwarding messages between the two pro-

grams can be mere function calls. However, MPs have to reveal

their proprietary trading programs to the exchange in this model.

Model 2: Separate gateways for hold-and-release. Model 2 deploys

gateways between the exchange’s infrastructure (ME and proxy

tree) and the VMs where MPs’ algorithms run. The exchange con-

trols the gateways hosting the hold-and-release programs, while

MPs control the VMs running their algorithms. It avoids the need

for MPs to reveal their programs or for the exchange to trust MPs

with hold-and-release. However, it introduces latency between the

hold-and-release program and MPs’ programs, as they run in sepa-

rate VMs. Throughput is unaffected, depending on VM bandwidth,

but OWD between VMs is around 50 µs, with high jitter due to

cloud latency fluctuations and spikes. In the absence of the spikes,

jitter may be in the tens of microseconds. Even with simultaneous

delivery at the gateway level, fairness at the receiver VM level is

not guaranteed due to this jitter.

Model 3: Trading programs run in secure enclaves Model 3 lever-

ages the confidential computing capabilities of VMs equipped with

secure enclaves such as AWS Nitro Enclave. An enclave can only

talk to its associated (parent) VM (and AWS Nitro Hypervisor). The

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Time (30 Minutes)
92.5

95.0

97.5

100.0

102.5

105.0

107.5

110.0

112.5
90

th
 P

er
ce

nt
ile

 L
at

en
cy

 (µ
s)

Without Optimizations
With Optimization

Fig. 20: RTT between a VM and its enclave stabilizes

exchange owns the VMs subjecting incoming messages to hold-and-

release before forwarding them to the respective enclaves within

the VMs. The MPs’ program executes within the enclave.
9
MPs do

not have to reveal their trading programs to the exchange and the

exchange does not have to rely on the MPs to run hold-and-release.

Despite of the strong security boundaries, this model incurs expen-

sive performance overhead: high latency, extremely low throughput,

and non-negligible jitter. This model has been referenced in [20].

The latency between a VM and an enclave is similar to the latency

between two VMs, making it comparable to Model 2. However,

Model 3 benefits from reduced jitter between a VM and its enclave,

likely because communication between them does not traverse the

network. Optimizations described next further reduce the jitter.

Nonetheless, throughput between a parent VM and its enclave is

significantly lower (about 70% lower) compared to the parent VM’s

ingress, as noted in [54].

Reducing jitter between a VM and an enclave We reduce the la-

tency variance between a VM and its associated enclave with some

optimizations: isolating CPUs, reducing scheduling-clock ticks, and

pinning threads to cores. Figure 20 shows the 90th percentile la-

tency between a parent VM and its associated enclave for each

tumbling window of 1 s. After the optimizations, the latency be-

comes much more predictable. We observe a jitter (the difference

between 90𝑝 and 50𝑝 latency) of ≤ 10 µs.

Recommended Model. Optimal performance is attained withModel

1, though MPs need to reveal their programs to the exchange. If an

exchange is obliged to not reveal its clients information to third

parties (potentially binding due to Section 6801 of 15 U.S. Code

in some territories [55]), this model should be adopted in practice.

Therefore, we use Model 1 in our deployment.

H MORE ON PROXY HEDGING

Reduced OWDs for each receiver. Proxy hedging improves OML

as the OWD to each receiver is reduced. Figure 21 shows OWD for

each receiver with (𝐻 = 2) and without hedging.

Associated Cost Proxy hedging lowers multicast throughput in

proxy VMs due to redundant tasks like sending messages to nieces.

Reclaiming this lost throughput requires𝐻 parallel proxy trees with

a shared root (sender) and leaves (receivers), assuming receivers

can handle the traffic. Table 4 details the cost of proxies on AWS,

based on the c5.2xlarge instance at $0.34/hour for 100 and 1000

multicast receivers which is minuscule compared to on-premises

exchange’s infrastructure cost and colocation fees [6, 56].

9
Loaded via remote attestation mediated by AWS Nitro Hypervisor

0 10 20 30 40 50 60 70 80 90
Receiver ID

100

150

200

250

300

99
th

 p
er

ce
nt

ile
 O

W
D

 (u
s)

No Hedging, Tree
Hedging, Tree

Fig. 21: OWD per receiver improves with hedging

N # of proxy VMs # of proxy VMs Cost/hour

(H=0) (H=2) (H=2)

100 10 30 $10.2

1000 110 330 $112.2

Tbl. 4: Cost of proxy hedging

I DETAILED INTUITION OF LOQ

CORRECTNESS

For any continuous sequence 𝑆 of orders with the same mid-price

(and thereby same value of 𝐼𝑚), only the critical orders will actually

be executed (i.e. matched with another order) by the ME, in the

order of their timestamps. Consider a non-critical bid with value𝑏 <

𝑚 −𝑤 . Since the lowest existing asking price before the sequence
is executed is, by definition, greater than𝑚, this bid cannot match

with any existing ask. Then, since all asks in the sequence have

value 𝑎 ≥ 𝑚 −𝑤 , the non-critical bid cannot match with any other

asks in its sequence. Non-critical orders in 𝑆 will only be matched

with orders that have strictly greater 𝐼𝑚 while all orders with higher

𝐼𝑚 have lower priority than all orders with lower 𝐼𝑚 .

Within 𝑆 , as long as the critical orders are processed in the

sorted timestamp order, the resulting executions will be the same

as executing all orders sorted by timestamp. Furthermore, if the

non-critical orders are also processed in the sorted timestamp order,

the state of the order book will be the same as processing each

order in 𝑆 sorted by timestamp. The limit order book is first sorted

by value (descending for bids and ascending for asks) and then by

timestamp; all the critical orders will be sorted first and then the

non-critical orders will be sorted after.

The LOQ construction holds the property that the critical and

non-critical orders are sorted by timestamp separately when de-

queued. Then, the sequencer at each node ensures that this property

is maintained when combining multiple streams consisting of LOQ

outputs. Finally, since 𝐼𝑚 is always increasing with timestamp, the

sequence of orders that the ME can be partitioned into contiguous

sequences of orders with the same value of 𝐼𝑚 . Therefore, since

the executions within and the state of the order book between

each partition equal the executions and state if the orders were

processed sorted by timestamp, the order of executions across the

entire sequence or requests will be the same.

J SEQUENCING OVERHEAD AND POTENTIAL

IMPROVEMENTS

There are two types of overheads in the sequencer: (i) waiting

for messages, and (ii) the overhead of packet processing within

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

the sequencer. The computation within our sequencer is fairly

straightforward for our packet rates; hence we focus on item (i).

The process of waiting for all downstreams’ messages before

releasing any message from the sequencer significantly lowers

the number of messages processed per second by the exchange,

making it a bottleneck. Any single trader’s packet taking longer

to arrive at the sequencer holds up the sequencer from processing

packets of all other traders. We empirically see that the number of

packets processed by the exchange decreases sharply when using a

sequencer as shown by evaluation.

Below, we discuss potential ways of improving the sequencer.

The first two suggestions below pertain to the overhead of waiting

for messages and the third pertains to the computation overhead.

1) Running 2 (or more) instances of a sequencer where each

trader submits one copy of order to each instance may improve

performance. Each sequencer is one separate VM. All sequencers

forward their output to the exchange VM. It is different from our

current setup in the submitted paper where sequencer and the

exchange may run in one VM.

More instances of a sequencer improve the chances of any one

instance receiving all traders’ packets early enough. However, it

needs to be empirically studied whether the benefits will outweigh

the new overheads i.e., (i) the exchange needs to process multiple

copies of data, check them for duplication, and discard them if

needed, (ii) throughput of the exchange may suffer as one extra

hop is introduced in the path of packets.

2) Another improvement could be to change the protocol to not

wait for messages from all clients and move on after a fixed amount

of waiting period. This may improve the throughput but incur some

unfairness as some participants’ messages are not accounted for.

3) A sequencer also has to identify whether at least one packet

has been received from each downstream VM. This check can be

made faster by a better algorithm or implementing in hardware

(such as within a SmartNIC if this is being eventually implemented

by the cloud provider). However, this may only bring benefits when

the packet rates are sufficiently high.

0 10 50 100 No RRPS
α

600

800

1000

1200

OM
L

90th Percentile
50th Percentile

Fig. 22: IID case: benefits in-

versely proportional to the

size of the spiky links’ set.

0 10 50 100 No RRPS
β (α = 50%)

600

800

1000

1200

OM
L

90th Percentile
50th Percentile

Fig. 23: Non-IID: Benefits in-

versely proportional to how

correlated the links are.

K RRPS MONTE CARLO ANALYSIS

To evaluate the effectiveness of RRPS under latency

spikes/fluctuations, we perform a Monte Carlo analysis. The

analysis shows that when a subset of links go through latency

spikes (due to heterogeneity of links), packet spraying leads to

latency reduction, because messages get a chance to avoid the

worse-off links.

As multiple virtual links may map to the same underlying physi-

cal links, the effectiveness of RRPS depends on how independent

links are from each other. In the case where each virtual link is

independent, we see the most latency reduction when the overall

network performance is good, while the reduction effect dimin-

ishes as links become more and more correlated (i.e., non-IID). To

capture this effect, we model the latencies as dependent as well as
independent random variables.

We define OML (overall multicast latency) for a multicast mes-

sage as:

OML = max

𝑖∈R
(𝐿(𝑆, 𝑖))

where:

• R is the set of all receivers,

• 𝐿(𝑆, 𝑖) represents latency of a multicast packet sent from the

root 𝑆 and received by receiver 𝑖 .

Independent Link Latencies: In this scenario, we have all links

divided into two mutually exclusive sets, each with a different

link latency distribution: 1. Spiky set (𝐴) and 2. Non-spiky set

(𝐵). The link latencies within each set are independent and iden-

tically distributed (𝑖 .𝑖 .𝑑). The mean of the latency distribution of

the non-spiky set is 50, while that of the spiky set is 500. Each

time a message goes through a link between two nodes, it uses the

latency sampled from the distribution of its assigned set. Formally,

let 𝐴 = {ℓ𝐴
1
, . . . , ℓ𝐴𝑚} and 𝐵 = {ℓ𝐵

1
, . . . , ℓ𝐵𝑛 } be the two sets of links,

let D𝐴 and D𝐵 be the two distributions with a mean of 500 and 50

each. Then, for a given time 𝑡 :

𝐿𝐴𝑗,𝑡 ∼ D𝐴, i.i.d. for 𝑗 = 1, . . . ,𝑚, 𝜃𝐴 = 500

𝐿𝐵𝑖,𝑡 ∼ D𝐵, i.i.d. for 𝑖 = 1, . . . , 𝑛, 𝜃𝐵 = 50

In order to simulate the real network better, we have a latency

to "stick" to that link for a few later messages as well.

Additionally, we state 𝛼 as the probability of a round of RRPS

causing at least one proxy to send through spiky links to its re-

ceivers. For instance, 𝛼 = 0% means proxies never send through

spiky links, which is effectively equivalent to there are no spiky

links, and 𝛼 = 100% means RRPS will always make a proxy to send

through spiky links. We assume that there are no spiky links from

proxy to proxy. 𝛼 can be seen as a metric of how the overall network

performs as well.

In the spike experiments, we assume that there is at least one

link in-use that is spiky when the system does not use RRPS. For

simplicity, we also assume that there are no spiky links from proxy

to proxy. Based on Figure 22, as 𝛼 increases, the overall latency

increases, because a message is more likely to go through a spiky

link. Yet, as long as 𝛼 is not 100%, it outperforms not using RRPS,

which constantly suffers from the spikes. The large difference in the

90𝑡ℎ percentile further backs how RRPS leads to latency reduction

by avoiding the worse-off links.

Dependent Link Latencies: In this scenario, we built depen-

dencies/correlations between the two aforementioned link sets, set

𝐴 with a size of 𝑛 and set 𝐵 with a size of 𝑚. We simulate each

link’s latency distribution in set 𝐵 depending on that of one link in

Network Support For
Scalable And High-Performance Cloud Exchanges SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

set 𝐴. The latencies of links within each set are independent and

identically distributed. Formally, for a given time 𝑡 , we have:

𝐿𝐴𝑖,𝑡 ∼ D𝐴, i.i.d. for 𝑖 = 1, . . . , 𝑛, 𝜃𝐴 = 500

𝜀 𝑗,𝑡 ∼ D𝐵, i.i.d. for 𝑗 = 1, . . . ,𝑚, 𝜃𝐵 = 50

𝐿𝐵𝑗,𝑡 = 𝑔

(
𝐿𝐴
𝑓 (𝑗),𝑡 , 𝜀 𝑗,𝑡

)
, for 𝑗 = 1, . . . ,𝑚,

where 𝑓 : {1, . . . ,𝑚} → {⊥, 1, . . . , 𝑛} maps each link in 𝐵 to

either a spiky link in 𝐴 or ⊥ which represents no dependency (𝐿𝐴⊥
is always 0), and 𝑔 is a deterministic transformation function. For

simplicity, we model 𝑔 as a linear function. Thus we have:

𝐿𝐵𝑗,𝑡 = 𝛽𝐿
𝐴
𝑓 (𝑗),𝑡 + 𝜀 𝑗,𝑡

where 𝛽 represents how dependent𝐴 is toward 𝐵. With a similar

setup as the previous scenario, we have the distribution of latencies

in set 𝐴 to be an exponential distribution with a mean of 500 and

that of set 𝐵 to be 50. For simplicity, we assume all proxy-to-proxy

links are in set 𝐴 (𝑖 .𝑒 ., not spiky).

To produce the simulated result in Figure 23, we fix 𝛼 = 50%,

𝑖 .𝑒 ., 50% of the time RRPS causes a proxy send through spiky links,

and 50% of the time send through links that depend on spiky links.

We observe that as 𝛽 increases, 𝑒.𝑔., as non-spiky links depend

more and more on spiky links, the overall latency increases. When

𝛽 = 100%, the latencies suffered by the dependent links exceed

those of the base links, as the former also samples from a non-

spiky latency distribution. The correlation between OML and "how

dependent links are" again demonstrates our claim that RRPS helps

the system to avoid slow paths, and thus minimize the overall

latencies.

L COMPARISONWITH ON-PREMISES

SYSTEMS

Onyx offers a different trade-off from on-premises exchanges: by

relaxing some of the strict performance guarantees, it can lever-

age the cloud’s benefits in terms of much higher scale (number

of participants) and cost-effectiveness (i.e., without specialized in-

frastructure and carefully measured cable lengths). This in turn

lowers the barrier to entry for new participants. Figure 24 shows

the trade-offs curve and Onyx’s position.

Additionally, for certain financial instruments (e.g., cryptocur-

rency), their dominant exchanges (e.g., Coinbase [57], Binance [58]

etc.,) have been built on the cloud since the beginning, where such

latencies are acceptable. For such instruments, Onyx is very com-

petitive in its latency, enabling an on-prem style high frequency

trading on the public cloud. We also intend to use Onyx to em-

pirically show how far (in scale and performance) we can take a

cloud-tenant centered approach to cloud-hosted exchanges. This

is in contrast to recent efforts by cloud providers themselves to

provide in-house support for such exchanges, often in partnership

with the exchanges (e.g., [59]). While Onyx’s performance will be

lower than that of a system designed by a cloud provider with

more intimate access to the infrastructure (e.g., the use of Smart-

NICs [4]), Onyx’s techniques are still valuable as it shows what can

be achieved immediately by cloud tenants with no help from the

cloud provider.

Cost

Fa
irn

es
s

On-
prem

Web
APIs

Onyx

Scalability

Pe
rf
or
m
an

ce

On-
prem

Web
APIs

Onyx

Fig. 24: Onyx Position

M PSEUDOSCODE FOR SEQUENCER

Algorithm 1 presents an efficient implementation of the sequencer’s

enqueue and dequeue routines. Enqueue is made lightweight so

that incoming messages can be processed as quickly as possible

and a queue formation at the ingress of the exchange’s VM can be

avoided. Enqueue is invoked at each new message while Dequeue

runs in a separate thread indefinitely.

Algorithm 1: Sequencer Enqueue and Dequeue

Input: 𝑛: Number of total downstreams (MPs)

𝑣 : Vector of 𝑛 lockless FIFO queues

𝑟𝑒𝑠𝑢𝑙𝑡 : A FIFO queue for sequenced messages

1 Enqueue(𝑚𝑖
𝑡) 𝑣 [𝑖] .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑚𝑖

𝑡);
2 Dequeue()

3 while True do
4 𝑡𝑠 ←∞;
5 𝑖𝑛𝑑 ← −1;
6 for 𝑖 ← 0 to 𝑛 − 1 do
7 if 𝑣 [𝑖] .empty() = True then
8 𝑡𝑠 ←∞;
9 𝑏𝑟𝑒𝑎𝑘 ;

10 end

11 𝑚𝑖
𝑡 ← 𝑣 [𝑖] .𝑡𝑜𝑝 ();

12 if (𝑡 = 𝑡𝑠 and 𝑖 < 𝑖𝑛𝑑) or (𝑡 < 𝑡𝑠) then
13 𝑡𝑠 ← 𝑡 ;

14 𝑖𝑛𝑑 ← 𝑖;

15 end

16 end

17 if 𝑡𝑠 ≠ ∞ then

18 𝑚𝑖𝑛𝑑
𝑡𝑠 ← 𝑣 [𝑖𝑛𝑑] .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ();

19 if 𝑚𝑖𝑛𝑑
𝑡𝑠 is a dummy message then

20 continue; ⊲ A message contains a field showing

whether it is a dummy.

21 end

22 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑚𝑖𝑛𝑑
𝑡𝑠);

23 end

24 end

N PACKET LOSSES IMPACT ON LOQ

As the exchange server multicasts market data, it can also add the

mid-price ID to outgoing data. If a receiver loses a market data

packet, it has stale information of mid-price until (i) it recovers

the lost packet or (ii) it receives the next packet (which is not lost).

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
Muhammad Haseeb, Jinkun Geng, Daniel Duclos-Cavalcanti, Xiyu Hao, Ulysses Butler, Radhika Mittal, Srinivas Narayana, and Anirudh

Sivaraman

0 25 50 75 100 125 150 175
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.005%
loss rate=0.050%
loss rate=0.500%

0 2080

90

100

Fig. 25: Lateness proportional

to losses. 10 MPs

0 20 40 60 80 100 120
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.005%
loss rate=0.050%
loss rate=0.500%

0 2080

90

100

Fig. 26: Similar trend with

100 MPs.

0 20 40 60 80 100
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.500%
loss rate=5.000%
loss rate=50.000%

0 2080

90

100

Fig. 27: 1 out of 10 experi-

ences losses.

0 20 40 60 80 100
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.500%
loss rate=5.000%
loss rate=50.000%

0 2080

90

100

Fig. 28: 2 out of 10 experience

losses.

0 20 40 60 80 100
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.500%
loss rate=5.000%
loss rate=50.000%

0 2080

90

100

Fig. 29: 5 out of 10 experience

losses.

0 20 40 60 80 100 120
Lateness

0

20

40

60

80

100

CD
F

loss rate=0.000%
loss rate=0.500%
loss rate=5.000%
loss rate=50.000%

0 2080

90

100

Fig. 30: 10 out of 10 experi-

ence losses.

During the period of stale mid-price, the receiver’s/MP’s orders will

carry stale mid-price ID introducing non-zero lateness for orders

in the exchange. We quantify this lateness as follows.

Figure 25 shows the lateness in the output sequence increases as

the packet losses increase, but is sufficiently small for the typically

observed losses (≤ 0.005%). This experiment involves 10 MPs, each

sending 10K messages per second for a duration of 10 seconds. We

repeat the experiment with 100 MPs, the results (Figure 26) show a

similar trend.

In the above experiments, allMPs experience the specified packet

loss rate. We perform experiments with 10 MPs, 1K orders per

second rate per MP, with varying number of MPs experiencing

the losses. Figures 27–30 indicate that lower the number of clients

experiencing losses, lower the lateness.

O ASSUMPTIONS SUMMARY

(1) Clocks of participant VMs and the exchange are synchro-

nized with negligible error (i.e., multiple orders of magnitude

better than the time resolution of interest). We achieve this

using Huygen’s algorithm.

(2) Clocks are monotonic.

(3) Packet losses are rare. It is true for today’s public cloud

infrastructure. Losses lead to brief periods of unfairness as

explained in evaluation.

(4) Order gateways running at the receiver VMs are under the

control of the exchange. It holds as receiver VMs are run

by the exchange, and MP’s trading programs are loaded in

them.

(5) LOQ’s fairness guarantees require simultaneous inference

of mid-price at all gateways. Multicast service provides si-

multaneous delivery of data, hence simultaneous inference

of mid-point, for vast majority of messages. Unfairness ap-

pears during rare periods of this assumption’s violation as

explained in evaluation.

(6) Gateways ensure that any generated orders by the MPs re-

spect action window 𝑤 (§5.2.1); non-compliant orders are

dropped by the gateways.

P DBO ORDER SUBMISSION RATE

Figure 31 shows Onyx achieves higher order matching rate than

both CloudEx and DBO.

Comparing DBO to Onyx is not an apple-to-apple comparison.

DBO ties each order submission to a received multicast message.

It’s fairness guarantees fall apart if an order submission uses infor-

mation from any other sources e.g., second last received multicast

message. While Onyx adopts fairness definitions that are used in

on-premises exchanges and an order may depend on various data

sources. DBO is not a generic financial exchange system as Onyx.

Reason for DBO’s low order matching rate: It utilizes a sequencer
similar to ours but does not employ a tree or any special scheduling

policy. The sequencing overhead makes it worse than both CloudEx

and Onyx. Onyx compensates the overhead of sequencing via a

tree and LOQ. On the other hand, CloudEx’s sequencer does not

provide guarantees of inbound fairness as it only waits for a set

timeout for any orders and consequently has a lower sequencing

overhead (but may break fairness guarantees).

0 10 20 30 40
Timeline (seconds)

10
2

10
3

10
4

10
5

Or
de

r M
at

ch
in

g
 R

at
e

(p
er

 se
co

nd
)

MPs stop here

Onyx
DBO
CloudEx

Fig. 31: Onyx achieves higher order matching rate than both

DBO and CloudEx

	Abstract
	1 Introduction
	2 Background
	3 Onyx Overview
	4 Market Data Multicast
	4.1 Round-Robin Packet Spraying
	4.2 Proxy Hedging
	4.3 Receiver Hedging
	4.4 Remarks on Multicast Packet Losses

	5 Orders Submission Service
	5.1 Sequencer
	5.2 Limit Order Queue
	5.3 Reusing Multicast Tree In Reverse

	6 Evaluation
	6.1 Multicast Latency Comparison
	6.2 Outbound Fairness Comparison
	6.3 Scaling Onyx Multicast
	6.4 Orders Submission Performance
	6.5 Outbound Communication Techniques
	6.6 Onyx and DBO

	7 Related Work
	8 Limitations & Future Work
	9 Conclusion
	10 Acknowledgments
	References
	A Deciding D and F for multicast tree
	B Scalable Simultaneous Delivery
	C Proxy Hedging Analysis Via Monte Carlo
	D Optimizations for High Throughput
	E Receiver Hedging State Synchronization
	E.1 Design
	E.2 Proof

	F Multicast Packet Losses
	G Onyx Trust Models
	H More On Proxy Hedging
	I Detailed Intuition of LOQ Correctness
	J Sequencing Overhead And Potential Improvements
	K RRPS Monte Carlo Analysis
	L Comparison With On-premises Systems
	M Pseudoscode For Sequencer
	N Packet Losses Impact on LOQ
	O Assumptions Summary
	P DBO Order Submission Rate

