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Abstract—1 Location-based services for mobile devices are
pervasive, and frequently process data sensed from nearby
devices as relevance is often dependent on proximity. Yet, today’s
services routinely use the client-server programming model which
leads to sensed data being sent through the cellular network to a
centralized server for processing. Harnessing the compute power
of mobile devices to process data locally could ease bandwidth
pressure on already overloaded cellular access networks and
improve response times. Realizing this vision requires a way to
easily program a collection of mobile devices connected over
ad-hoc wireless. This paper presents DIstributed Programming
Layer Over Mobile Agents (DIPLOMA), a programming layer
and distributed shared memory system that provides coherent
relaxed-consistency access to data residing on different mobile
phones across a large geographic area. Our key insight is in
translating the shared memory model from parallel computing
to mobile computing, while addressing the unique challenges
that mobility and unreliable wireless networking present in
achieving consistency and coherence. We designed, prototyped
and deployed DIPLOMA on 10 Android phones, evaluating
it against another 10 phones running a conventional client-
server setup over both 3G(HSPA) and 4G(LTE) networks. On
DIPLOMA, we implemented a Panoramio-like service as an
example of a popular and representative location-based service,
as well as a synthetic benchmark to measure response time,
cellular bandwidth consumption, and power consumption. We
also simulated large scale scenarios (up to 160 nodes) on the
ns-2 network simulator. Compared to a client-server setup, our
system shows response time improvements of 10X over 3G and
2X over 4G. We also observe cellular bandwidth reductions of
96%, comparable energy consumption, and a 95.3% request
completion rate with coherent caching.

I. INTRODUCTION

Mobile devices are now ubiquitous. Equipped with sophis-

ticated sensors such as GPS, camera, accelerometer and more,

they already sense and generate large amounts of data. With

quad-core [1] phones now on the market, smartphones will

increasingly be able to compute on the sensed data in-situ as

well. Yet, mobile phone applications still use the conventional

client-server model, with a thin client front-end on the phone

delegating compute-intensive tasks to servers in the cloud.

This model is widely used for simplicity, but has several

disadvantages in a mobile context:

1) Overloading of cellular access networks: Wireless

spectrum is at a premium [2]. Next-generation cellular

data networks (4G/LTE) are unlikely to fix this for two

reasons: 1) 4G networks are now a substitute for home

broadband; 2) Higher screen resolutions are increasing

1This work is supported by the Singapore-MIT Alliance for Research and
Technology Future Urban Mobility IRG, and the United States Department
of Defense NDSEG fellowship.

user demand for high bandwidth content such as stream-

ing video. A recent study projected demand to exceed

capacity on cellular networks by 2014 [3].

2) Long and variable latencies: Cellular networks are

characterized by long and highly variable latencies,

degrading application response times [4], [5]. Our own

measurements in Section IV confirm that 3G latencies

can be as high as 50 seconds. 4G latencies are currently

significantly better (Section IV), but performance on 4G

networks will also degrade as user adoption increases.

3) Poor battery life: Cellular data transmission drains

energy [6], a primary resource for mobile phones.

4) Monetary cost: Cellular service plans are increasingly

metered and monthly caps are common [2].

We propose moving to a shared memory programming

model for location-based services, addressing the issues above

by leveraging free, energy-efficient, and low-latency adhoc

WiFi to replace cellular accesses when possible. Application

developers see a single global address space as our program-

ming layer creates a shared memory abstraction and hides the

underlying mobility and phone-to-phone coordination. Thus,

we make the following contributions in this paper:

1) We design and implement DIPLOMA, a Distributed

Programming Layer Over Mobile Agents, enabling dis-

tributed programming by exposing a shared memory

model to the application developer (Sections II and III).

2) We implement an app similar to the popular

location-based photo sharing service on Google Maps,

Panoramio [7], and a synthetic benchmark, and mea-

sured substantial benefits in latency and cellular band-

width reduction compared to a conventional client-server

implementation on 3G and 4G (Section IV).

II. THE DESIGN AND SEMANTICS OF DIPLOMA

At a high level, a collection of mobile smartphones is a

distributed system with each device having a processor core

and memory. Devices are interconnected by short range radios

such as ad-hoc WiFi. We propose that devices cooperate and

share their memory1 to form a distributed shared memory

(DSM) system to present a familiar interface to developers.

However, typical DSM systems use static nodes connected

over a reliable interconnect, while a collection of smartphones

represents mobile nodes connected via unreliable wireless

1Mobile apps are typically sandboxed, so their effects on the system are iso-
lated, mitigating security concerns. Additionally, future mobile virtualization
can further isolate DIPLOMA apps [8].



networking. To address device mobility, we divide a geo-

graphical area into a 2D mesh of regions. Within each region,

we abstract the collection of all phones in the region into a

single, reliable and immobile Virtual Core (VCore) with its

own memory (Section II-A). To address the unreliability of

the wireless interconnect, we relax our memory consistency

model (Section II-B). Additionally, we cache to speed up

remote reads, and propose Snoopy, Resilient Cache Coherence

(SRCC) to maintain coherence (Section II-C).

A. The Virtual Core layer (VCore)

VCores provide the abstraction of static reliable cores inter-

connected via a 2D mesh. We leverage Virtual Nodes(VN) [9],

which abstracts a collection of unreliable mobile nodes in

direct communication range of each other2 into a stationary

reliable virtual node. In the original VN system [10], a large

geographical area like a city is first divided into equal-sized

regions. Mobile nodes can infer their region via localization

(e.g. GPS). Region size is chosen based on radio range, such

that messages sent from one region can be heard by all nodes

in the region, as well as in all neighboring regions. All physical

nodes in a region participate in a state replication protocol to

emulate a single VN per region.

The nodes elect a leader using a simple algorithm. Each

node, on entering a new region, sends a leadership request to

all nodes. If the leadership request is not rejected, the node

claims itself as the leader and sends out regular heartbeat

messages announcing its leadership. If a non-leader misses a

certain number of heartbeats, it sends out a leadership request.

The client nodes broadcast requests to their local region. The

leader, and non-leaders, run the same server application code.

All nodes receive client requests and process them according

to the application code. Only the leader node sends responses;

others buffer responses until they hear the same response

message from the leader. By observing the leader’s replies,

the non-leaders synchronize their application state to the leader

and correct themselves upon a state mismatch.

The only practically deployed implementation of VN is

described in [10], on a small set of PDAs. Another imple-

mentation [11] simulates VNs on the ns-2 [12] simulator.

These original VN systems run into problems in practice due

to unpredictable mobility and unreliable networking. Regions

could become unpopulated, causing VNs to lose state. Wireless

contention and range issues can create multiple leaders if

nodes do not hear heartbeats, causing inconsistent state.

Proposed Virtual Cores. To address these problems, we

propose a new implementation called Virtual Cores (VCores).

A VCore is the leader in a group of mobile nodes in a

single region. Most anomalies in Virtual Nodes occur when the

elected new leader is out-of-sync with the old leader. VCores

correct this via occasional coordination with a reliable cloud

server using cellular networks like 3G (HSPA) or 4G (LTE).

Region boot-up: When the first mobile node enters a region,

it broadcasts a leadership request message. If there is a VCore

2DSMLayer, described later, removes this constraint so deployments can
span arbitrarily large geographic areas.

running here, it replies to the request and the new node

becomes a non-leader. If the new node does not hear a reply

within a timeout period, it contacts the cloud to nominate itself

as a leader. The cloud knows if a VCore is already running in

the region, and rejects the leadership request if so. Otherwise,

it sends the latest shared memory state of this region back to

the node, which then boots itself as the region’s new VCore.

Leader (re)election: The VCore provides a stationary, reli-

able core abstraction until it leaves the region. At this point, it

broadcasts a LEADER ELECT message back to the old region.

The nodes in the old region receive this message and reply with

a LEADER NOMINATE message. The old VCore randomly

chooses one to be the new VCore and sends it a copy of the

shared state with a LEADER CONFIRM message. The new

VCore sends a final LEADER CONFIRM ACK message to

the old VCore. If the election fails due to message losses or if

the old region is unpopulated, the old VCore sends the shared

state to the cloud for later retrieval by a new VCore. The above

steps ensure that if the region is populated, exactly one node

in this region will be selected as the new VCore.

No state replication: In the original VN, the leader’s state is

replicated on all non-leaders, which keep their state synchro-

nized with the leader by observing requests and the leader’s

replies. We eliminate replication since it does not improve

reliability: the cloud server has to confirm leadership requests

anyway to ensure consistent state.

B. The DIPLOMA Shared Memory layer (DSMLayer)

DSMLayer is implemented as an API that runs atop the

immobile and static VCore abstraction which is overlaid over

individual phones. DSMlayer glues VCores in a grid/mesh

topology, communicating via wireless multi-hop messages

between adjacent VCores. The phone currently running the

VCore for a region contributes part of its memory towards

the global shared memory, addressed through variable names

rather than binary addresses. These variables make up the

shared address space of DSMLayer. Each shared variable

resides on one VCore, its home VCore. Variables are accessed

consistently through the Atom primitive, which is a block

of instructions executed atomically on the shared variables

resident on a single home VCore. To execute an Atom, it is

multi-hop forwarded3 from the originating VCore to the home

VCore and executed on its portion of shared memory.

Atoms are atomic, and always execute once or fail com-

pletely. They are equivalent to a critical section, or an acquire-

release block in Release Consistency (RC) [13]. We discuss

similarities and differences with RC in detail in Section V.

We guarantee relaxed consistency [14] by default and allow

Atoms to be reordered by the unreliable wireless network.

To optionally enforce stricter ordering between atoms, we

provide AtomFence, a per-home VCore memory fence prim-

itive that can be executed before an Atom to guarantee that

all previous Atoms occurring in program order in the thread

3Beyond a certain threshold of hop count, ad-hoc WiFi energy and latency
will exceed those of cellular networks, and a hybrid cloud/WiFi solution would
be better



have completed. The use of AtomFence is optional: for some

applications, allowing reordering improves performance.

Additionally, DIPLOMA provides at-most-once [15] execu-

tion semantics for Atoms by logging the reply when an Atom

is executed. Thus, if a duplicate request is received due to a

retry, the logged reply is sent back without re-execution.

C. Snoopy and Resilient Cache Coherence (SRCC)

Accesses to remotely homed data result in round-trip

(possibly multi-hop) communications between the requesting

and home VCores; resending lost messages exacerbates these

delays. Caching addresses this problem, but necessitates a

coherence protocol. We explain our design choices below.

Traditionally, coherence protocols are either broadcast-

based [16] or directory-based [17]. In a wireless context,

the latency of an extra hop (required by directory-based

protocols) is high and communication is inherently broadcast,

so broadcast-based protocols are a better fit. Further, write

update protocols are more suitable than write invalidate pro-

tocols since write update protocols result in fewer messages

exchanged. They consume more bandwidth by carrying the

shared data in each message, but WiFi bandwidth is sufficient.

Additionally, we use a write-through, no-write-allocate cache

to ensure writes do not appear in the local cache until the

local VCore receives a write update confirming the write

is complete at the remote home VCore. To ensure memory

consistency, all cached copies in the system must see the same

order of reads and writes to a particular memory address. We

build on timestamp snooping [18] and INSO [19], which are

multiprocessor broadcast-based protocols that achieve ordering

on unordered networks by assigning ordered numbers to

coherence messages and presenting them in order to the desti-

nation caches. INSO and timestamp snooping rely on a highly

reliable interconnect, however, making them unsuitable for

wireless networks. DIPLOMA requires a novel write update,

snoopy (broadcast-based) cache coherence protocol resilient

to unreliable networking.

We design a Snoopy and Resilient Cache Coherence

(SRCC) protocol. SRCC guarantees that memory operations

to the same shared variable owned by any home VCore are

seen by all remote caches in the same order. To ensure that

all VCores see the same global order of Atoms, each home

VCore keeps a counter called global order maintained by

DSMLayer. This counter indicates the number (order) that

the next Atom (which may contain load/store instructions

to this home VCore’s shared variables) will be tagged with.

This counter is initialized to 1. Each VCore also maintains a

local order, which indicates which number (order) this VCore

will accept next, also initialized to 1. A VCore accepts a write

update when the global order of the write update equals its

current local order, and subsequently increments local order.

Write updates with higher orders are buffered until their turn

arrives. Figure 1 walks through one such transaction of SRCC.

TABLE I
DIPLOMA INTERFACE METHODS.

Method Implemented by

→ Called by

Invoked

on

Description

long makeAtomRequest(long ato-

mId, long destVCoreX, long destV-

CoreY, boolean isWrite, byte[] data);

DSMLayer →

Programmer

Requesting

region

Request to execute a predefined

Atom (identified by atomId) on

a destination VCore. Can include

data. Returns a long to identify the

request.

Atom handleAtomRe-

quest(DSMLayer.Block b, Atom

c);

Programmer →

DSMLayer

Target re-

gion

Execute an Atom on the local por-

tion of shared memory and return

a reply Atom.

void handleAtomReply(Atom a); Programmer →

DSMLayer

Requesting

region

Callback for receiving an Atom re-

ply.

void atomFence(long destVCoreX,

long destVCoreY);

DSMLayer →

Programmer

Requesting

region

Block until all pending Atoms have

finished at the destination region.

III. DIPLOMA IMPLEMENTATION

A. DIPLOMA’s API

Table I lists the DIPLOMA API. First, the application pro-

grammer wishing to use DIPLOMA implements the UserApp

i.e. the service to be provided in the network. Within the

UserApp, the programmer implements the function bodies

of the Atoms that can be executed on any specified home

VCore at run time. Atoms can contain arbitrary Java code

that may contain reads and writes on multiple variables on

one home VCore. The application logic in the UserApp

requests the execution of an Atom by calling a method

exposed by DSMLayer, makeAtomRequest. Behind the

scenes, the DSMLayer routes the request to the specified

home VCore, where handleAtomRequest is invoked with

a reference to the local portion of shared memory on which to

execute the Atom. handleAtomRequest (implemented by

the programmer) returns a reply which is routed back to the

originating VCore and passed to handleAtomReply (also

implemented by the programmer). The programmer may also

call atomFence to block program execution until all pending

and in-flight Atom requests to a home VCore from a requesting

VCore have either succeeded or failed / timed-out.

B. Prototype Design

We implemented DIPLOMA as an Android application

running on Nexus S phones with 3G and Galaxy Note

phones with 3G and 4G. Our implementation is comprised

of 3 components: the application-developer-implemented app

(UserApp), which runs on top of the DIPLOMA Shared

Memory Layer (DSMLayer) with caching (SRCC) (enabled

optionally), which runs on top of the Virtual Cores layer

(VCore). All 3 components run in a single thread to eliminate

inter-thread communication. This also ensures execution of

Atoms cannot be interrupted by VCore protocol messages.

Atoms are also marked with Java’s synchronized keyword

to disallow concurrent access.

A second thread runs a busy-wait loop to receive packets on

the adhoc WiFi interface. To communicate between the first

and second threads, a Mux is implemented in a third thread, so

packets can always be en/dequeued regardless of activity in the

first thread. When a VCore needs to upload shared memory

to the cloud server, the VCore layer pauses the DSMLayer,

serializes the shared memory to JavaScript Object Notation

(JSON), and sends it over the cellular network to the server.



local_order [5] = 1;

local_order [5] = 1; global_order = 2;

VCore 1 VCore 2 VCore 3

VCore 4 VCore 5 VCore 6

write_update[5] (g_o = 1)write_update[5] (g_o = 1)

(a) State of system when first write update of
VCore 5 is broadcast. The update does not
reach VCore 4.

local_order [5] = 2;

local_order [5] = 1; global_order = 3;

VCore 1 VCore 2 VCore 3

VCore 4 VCore 5 VCore 6

write_update[5] (g_o = 2)write_update[5] (g_o = 2)

(b) State of system when second write update
of VCore 5 is broadcast. This update reaches
both VCores 4 and 3.

local_order [5] = 3;

global_order = 3;

VCore 1 VCore 2 VCore 3

VCore 4 VCore 5 VCore 6

write_update[5] (g_o = 1)

         (RETRY)

local_order[5]=1

write_update[5](g_o = 2)

(c) First write update of VCore 5 retried.
Second write update is buffered at VCore 4
with a global order of 2.

Fig. 1. Walkthrough example of SRCC for two writes to VCore 5. Only VCores 3, 4 ,5 are detailed for clarity.

C. Practical Considerations

Next, we discuss some of the issues that arise in a practical

deployment of DIPLOMA, describe how our implementation

deals with them and continues to operate correctly.

Wireless range more limited than assumed. DIPLOMA’s

default behavior for VCore assumes that the exiting leader

remains in wireless range of its old region when it moves

to a neighboring region, so that it can elect a new leader.

If the old leader moves out of range before electing a new

one, it sends its state to the cloud server so that a new

node may download and boot the VCore later. If the wireless

range turns out to be much smaller than expected, it could

cause many region reboots, hurting latency and completion

rate. Our benchmark deployment (Subsection IV-A) shows

that WiFi wireless range is sufficient: 57% of leader hand-offs

succeed without requiring a region reboot, enough to achieve

completion rates up to 95.3%.

Resilience to node failures. DIPLOMA monitors for low

battery or user opt-out, and initiates leadership hand-off. It

also monitors for unexpected node failures with a leader-to-

cloud heartbeat (every 120 seconds in our implementation), so

that the server will become aware of node failures and allow

a new node to become the leader with the last known state.

Atomic execution of Atoms in the face of interrupts.

In our implementation, the DSMLayer runs in the same

thread as the VCore layer and message handling methods are

marked with Java’s synchronized keyword to ensure that

VCore protocol messages cannot interrupt Atom execution.

Additionally, when the VCore layer hands off leadership, it

pauses the DIPLOMA layer, ensuring that no DIPLOMA

Atom requests are processed by the old VCore while or after

the new VCore receives the state. Instead, any DIPLOMA

Atom requests received during the hand-off a dropped and

resent to the new VCore later by the requesting VCore.

Intermittent cellular connectivity. When a node needs to

make a cellular access, e.g. upon entering an empty region, it

sends a request to the server to become the VCore, retrying

if the server is unreachable. Thus, for DIPLOMA to work,

the cellular connection must be eventually available. Current

metropolitan cellular networks exhibit this behavior; in our

benchmark deployment (Subsection IV-A), 3G was available

98% of the time.

IV. EVALUATING DIPLOMA

We implemented two mobile applications to evaluate

DIPLOMA vs cloud-only solutions: a synthetic benchmark

that is scripted to generate a specified percentage of read and

write requests to a random VCore, and a Panoramio-like [7]

app. For comparison, we also implemented cloud-only appli-

cations functionally equivalent to the DIPLOMA versions, but

relying purely on HTTP requests over 3G/4G to a single-

threaded Python web server. The server ensures that accesses

to the shared memory are consistent, and provides the same

functionality. The server is located in the same geographic

region as the phones to minimize backbone Internet latency.

A. Benchmark App

We carried out a deployment with our synthetic benchmark

running on Google Nexus phones with 3G radios in a covered

pavilion last year. The area is divided into four regions of

5mx5m per region. Ten volunteers held two phones each,

with DIPLOMA running on one phone and cloud-only shared

memory (SMCloud) on the other. The volunteers walked

among the regions with the phones and indicated which

region they were in at a given time. We evaluated DIPLOMA

under combinations of SRCC caching disabled/enabled and

varying read/write distributions. We measured DIPLOMA’s

performance against the cloud-only version (SMCloud) using:

(1) average latency of successful requests, (2) completion

rate of requests, (3) average energy consumed per successful

request, and (4) cellular data consumption. Our methodology

and results are detailed below.

Average latency: User interface interactions are times-

tamped to obtain end-to-end request latencies. We compare

DIPLOMA to SMCloud in Figures 2(b) and 2(e)4. Request

latencies for DIPLOMA are typically an order of magnitude

lower than those in SMCloud.

Without caching, read and write latencies do not vary

greatly across read vs. write distributions, as they both incur

hops to remote HOME VCores. With caching enabled, high

read percentages (90%) show significantly decreased latencies:

when requests are serviced at the local VCore from its cache,

4SMCloud results appear in both the cache and no cache trials because we
ran it in every trial simultaneously against DIPLOMA to control for cellular
conditions between trials.
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(f) Wireless active power comparison
Fig. 2. Completion rate, latency and power comparison of SMCloud and DIPLOMA in Pedestrian Deployment

hops to remote VCores can be eliminated. Write latencies are

significantly higher than read latencies because they require

write updates to be broadcast to the entire system. This

increased write latency is even more pronounced at lower

read (higher write) percentages (60%, 30%) as the write

updates increase network congestion, and even impact and

increase read latencies, too. Thus, caching is advantageous in

applications with a higher proportion of requests being reads.

Request completion rate: We calculate the percentage of

issued requests that complete (Figures 2(a) and 2(d)). Again,

we measure reads and writes separately and in aggregate, and

compare the completion rate of DIPLOMA to SMCloud.

Without caching, the completion rate of application-level

requests is 57%, and does not vary between read/write dis-

tributions, as expected. With caching, at 60% reads, 80% of

application-level requests on DIPLOMA complete. Note that

these application-level requests incur an extra wireless hop

from a client app to the UserApp on the region’s VCore, which

may fail before DIPLOMA is even invoked; the completion

rate of the DIPLOMA Atoms alone is 90.9% for 60% reads,

and 95.3% for 90% reads. Caching allows many read requests

to be successfully serviced from the local VCore even when

a read request to the remote VCore fails.

The completion rate is lower at lower read distributions

(30%) due to several factors: more requests are writes, which

have lower completion rates than reads because they cannot

be cached and must be sent to remote regions; higher wireless

contention due to more write updates being broadcast to

the entire network, resulting in dropped application packets.

This is seen in the disparity between DIPLOMA-level and

application-level request completion rates. The application-

level implementation does not implement a retry/ack mech-

anism, unlike DIPLOMA. Thus, at 90% reads, though 95.3%

of the DIPLOMA Atoms successfully complete at the VCore,

the local VCore’s subsequent reply to the client node is only

received in 66.8% of requests.

In contrast to DIPLOMA, in SMCloud we observe a 100%

completion rate (not shown in figure) of requests, but re-

quests can take as long as 55 seconds to complete in our

evaluations. Such high latencies are instances of a problem

called Bufferbloat [20]. We discuss DIPLOMA’s completion

rate further in Section IV-C.

Power consumption: We use the Monsoon power me-

ter [21] to build an energy model for the Nexus S devices.

Devices running DIPLOMA use adhoc WiFi, so energy for

access point scanning and associations is not incurred. Con-

sistent with previous studies [6], [22], our results shows that

the energy of a WiFi transmission is significantly less than that

of 3G. In our applications, a single HTTP request over 3G is

measured to consume 2.6 Joules, while a single WiFi packet

transmission might consume only 0.066 J. We do not factor

into account energy expended in localisation because this is a

task common to both SMCould and DIPLOMA.

We create a linear regression for receive and transmit energy

across several packet sizes (1k, 2k, 4k, and 8k bytes) (R-

squared=0.999 for Tx, 0.959 for Rx). This regression is applied

to average packet sizes calculated from the deployment logs to

obtain per-packet energies for each of the deployment trials,

obtaining total energy consumed by WiFi and 3G in each trial.

WiFi idle power (turned on, but not receiving or transmit-

ting) is also measured, and then calculated for each of the

trials using experimental run time. Again, consistent with [6],

[22], we find that WiFi consumes significant idle power: with

only the 3G radio turned on, current consumption is 149 mA.

Once adhoc WiFi is turned on, current consumption increases

46% to 218 mA, without any WiFi traffic.

We use these observations to measure the power consump-

tion of both DIPLOMA and SMCloud by processing logs

offline. Both SMCloud and DIPLOMA applications wait for

2 seconds between requests5. The 3G radio does not return to

a low power state between requests in SMCloud due to cloud

52 seconds being a realistic time between user interactions. We choose not
to batch requests since they are user-initiated, and to maintain a responsive
user experience, should not be delayed
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accesses being much more frequent; therefore, measurements

include 3G tail energy [6] for all cloud accesses. Taken

together, these measurements give total energy consumed by

WiFi + 3G for DIPLOMA, and total energy consumed by 3G

for SMCloud, per trial. These totals are then divided by the

number of successful requests per trial to arrive at an average

energy consumed per successful request per trial.

As we see in Figure 2(f), DIPLOMA reduces active wireless

energy consumption by up to 94% per successful request.

However, when WiFi idle power is factored in, DIPLOMA

is more energy efficient only with caching enabled at 60%

read distributions or higher (Figure 2(c)), due to WiFi idle

power being quite significant. This highlights the need for

better power management of WiFi radios when used in adhoc

mode for short-range phone-to-phone communications.

Cellular access reduction: SMCloud solely communicates

with the cloud server over the cellular data network, so a cloud

access is incurred for every read or write request to shared

memory. In contrast, DIPLOMA incurs cloud accesses only

for region bootups and leadership changes, which occur due to

mobility rather than application interactions, so these accesses

are amortized over the requests from the application. Hence,

we divide the total number of successful cloud accesses by the

number of successful requests (DIPLOMA was able to reach

the cloud through 3G in 98% of attempts). These results are

shown in Figure 3 where the x-axis represents the percentage

of reads in our benchmark app.

DIPLOMA without caching averages 0.21 cloud accesses

per successful request, a 79% reduction from SMCloud, and

DIPLOMA with caching averages 0.14 cloud accesses per

successful request, a 96% reduction. Caching leads to more

successful requests and quicker responses, while the number

of cloud accesses remains the same. This advantage is more

pronounced at higher read percentages.

B. Panoramio-like App

We implemented a Panoramio-like app on Galaxy Note

phones to demonstrate that popular consumer mobile apps

today can be readily ported onto DIPLOMA. In the app, we

use the shared memory abstraction provided by DIPLOMA

to retrieve and update photo data. Users (clients) can take

pictures of interesting things where they are, and they can also

get pictures taken by other users. The photos are stored in the

same region that they are taken in. If a user desires to view

photos from a remote region, gets can traverse multiple hops

on their way to a remote region. The phones serve double duty

by both participating in DIPLOMA (as leaders or non-leaders)

TABLE II
PANORAMIO-LIKE APP LATENCIES OVER 3G

takes takes gets gets

CameraSM CCloud CameraSM CCloud

mean 144 ms 2558 ms 217 ms 2279 ms

median 109 ms 2465 ms 161 ms 2229 ms

TABLE III
PANORAMIO-LIKE APP LATENCIES OVER 4G

takes takes gets gets

CameraSM CCloud CameraSM CCloud

mean 144 ms 546 ms 178 ms 469 ms

median 107 ms 534 ms 159 ms 469 ms

and being the clients of the application themselves. To reduce

the size of data transfers, we apply JPEG compression to all

pictures before transmission. We also implement a functionally

equivalent cloud version (CCloud) of the same app (accessed

through 3G/4G) and compare the DIPLOMA version without

caching (CameraSM) to the cloud based version in terms of

completion rate and request latencies.

We carried out a deployment of Panoramio on 20 Galaxy

Note phones over 3G and 4G networks this year, with 10

phones running CameraSM, and another 10 running CCloud.

Phones are placed statically and uniformly across 6 regions

(5mx5m each) within an open indoor space. Two people

walk around the phones clicking on buttons simultaneously on

CameraSM and CCloud pairs of phones, taking and getting

pictures. We present mean and median latencies in Tables

II and III, omitting distributions for brevity. Similar to the

benchmark application, we also measured the number of cloud

accesses per application-level get or take request for both

CameraSM and CCloud. Since CCloud makes a cloud access

on every request, this number is 1 for CCloud on both 3G

and 4G networks. For CameraSM, we observed 0.29 cloud

accesses per request on 3G, and 0.22 accesses per request

on 4G . Since the phones were static, these accesses were

primarily due to leader-to-cloud heartbeats which occurred at

2 minute intervals. The heartbeat interval allows us to trade

off between number of cloud accesses and the reboot time of

an unpopulated region. We observed a high completion rate

of 98.6% for CameraSM across 573 requests, and 100% for

CCloud across 564 requests. These results show DIPLOMA

outperforming both 4G and 3G cloud implementations in

response times while retaining high completion rates.

As Panoramio has substantial write traffic, our write update

caching protocol leads to excessive WiFi traffic (approximately

6KB write updates for every region when a picture is taken,

plus associated ACKs) and was turned off in this deployment.

In hindsight, applications like Panoramio would work better

with a write-back protocol. We don’t have power comparisons

for Panoramio as 4G has more sophisticated power manage-

ment, making it difficult to apply a power model naively to

our activity traces to get accurate power estimates.

We also conducted outdoor mobile deployments with this

app, but saw high loss rates over ad-hoc Wifi, which could be

due to the large packet size of images, high WiFi interference

in the area, and/or poor antennas on the Notes. We are in the

process of diving further into these ad-hoc WiFi problems and

investigating potential optimizations.



C. Simulation studies

We use ns-2.37 [12], a discrete event network simulator, to

evaluate our system at scale with the synthetic benchmark.

Node mobility is simulated with the Random Way Point

model with three settings: slow, medium and fast (Figure 6).

Node movements are constrained to a 350m × 350m terrain

and the radio range is fixed at 250m. 250m is well within

the transmission range of 802.11p or DSRC [23], which we

expect will become the basis for adhoc communications for

distributed mobile apps. This radio range dictates our region

size since every broadcast has to be heard by the neighboring

regions as well, resulting in 4 x 4 regions. Since we have 4

regions in each dimension, we also evaluate the efficiency of

caching for requests that traverse between 0 and 3 hops. Each

simulation lasts 40000 seconds.

Variation of node density. We vary the number of nodes

from 40 to 160 to study the effect of increasing node density

on DIPLOMA’s performance. The resulting node density is

close to typical car densities in US cities which vary from

1700-8000 cars per square mile [24], or about 80-380 cars for

our 350m×350m terrain. Figure 4 shows the effect of varying

the number of nodes on the completion rate of DIPLOMA. We

see that increasing the node density significantly improves the

performance of DIPLOMA. Also, after a threshold density of

80 nodes, the completion rate saturates near 100%.

Usefulness of caching. One intuitively expects caching

to be more useful for reads to farther away regions. Writes

would also take longer since they trigger updates in SRCC.

To study this, in Figure 5 we plot the completion time of a

request with caching enabled for varying node speeds. The

numbers are normalized to a no-caching implementation. The

proportion of reads and writes is kept equal to avoid any

bias. We see that caching improves latency for all requests

spanning 1 hop or more. On average, the 1-hop, 2-hop and 3-

hop requests have a 35%, 45% and 48% lower request latency

as a result of caching. However, the incremental benefit of

caching decreases with increasing hops. This is understandable

since write latencies scale linearly with hop count.

In summary, our simulation results demonstrate the effec-

tiveness of caching and show how penetration of DIPLOMA

affects performance. We envision that a large city scale de-

ployment will have sufficient density to achieve a completion

rate close to 1, while simultaneously providing the latency and

cellular utilization benefits we observed in our deployments.

V. RELATED WORK

DIPLOMA is related to several systems in Computer Ar-

chitecture, Sensor Networks, Distributed Algorithms and Dis-

tributed Systems. We outline key similarities and differences.

Computer Architecture: Most commercial architectures,

such as x86 [25] and IBM PC [26], stay close to sequential

consistency [27] by reordering only certain instruction combi-

nations. Similar to DIPLOMA, some processor architectures

(Alpha [28], Sparc [29]) aggressively reorder all instructions

by default and provide memory fences for the programmer or

compiler to enforce ordering if required.

Among research systems, DIPLOMA is closest to Release

Consistency (RC) [13]. RC defines memory operations as

either ordinary or special. Special operations are either syn-

chronization or non-synchronization accesses. Synchronizing

accesses are either acquires or releases. Memory accesses

within an acquire-release block form a critical section and

execute atomically, provided each critical section is protected

with enough acquires. Every Atom in DIPLOMA implicitly

begins with an acquire and ends with a release, guaranteeing

exclusive access to the Atom’s shared variables.

DIPLOMA has similarities to Transactional Memory [30]:

Atoms are like transactions, but transactions allow atomic

modifications to arbitrary portions of the memory, while

Atoms operate on memory belonging to one VCore alone.

Sensor Networks. Several programming languages have

been proposed for collections of resource-constrained devices.

Kairos [31], an extension of Python, abstracts a sensor network

as a collection of nodes which can be tasked simultaneously

within a single program. Pleiades [32] borrows concepts from

Kairos and adds consistency support to the language. These

proposals are tailored to static sensor nets and do not deal

adequately with mobility.

Distributed Algorithms. Most distributed algorithms for

mobile agents tackle programmability by first emulating a

static overlay. Virtual Nodes (VN) [9] is one such abstraction.

Section II-A discussed the practical issues with VN. Geoquo-

rums [33] provides consistency support using a quorum-based

algorithm to construct consistent atomic memory over VNs,

but it assumes reliable physical layer communication. [34]

presents complex algorithms to implement reliable VNs over

an unreliable physical network through consensus, which is

expensive in practice on wireless networks.

Distributed Systems. There are several loosely coupled

distributed systems that explore varying notions of consis-

tency. Bayou [35] allows eventual consistency between data

copies residing on differing replicas, which could be mobile

nodes or dedicated servers. All replicas are equal and merged

opportunistically using an anti-entropy protocol. In contrast,

DIPLOMA maintains one authoritative copy of the data (the

VCore) and actively resolves conflicts using cache coherence.

CODA [36], is a file system for mobile devices with unreli-

able cellular connections. DIPLOMA instead targets shared

memory and assumes modern cellular connections are far

more reliable (albeit with very long and variable latencies).

InterWeave [37] is a hierarchical consistency model with

varying consistency guarantees for different levels ranging

from hardware shared memory to weakly consistent shared

memory across the Internet. It is significantly different from

our system since DIPLOMA is homogeneous and flat and op-

erates primarily on wireless LAN links. Semantically, Tread-

Marks [38] is the closest to DIPLOMA since it implements

release consistency. Further, similar to DIPLOMA, it imple-

ments Distributed Shared Memory. However, TreadMarks is

tailored to a workstation environment with highly reliable

LAN links. Mobility and network unreliability are new prob-

lems DIPLOMA tackles.
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Parameter slow med fast

Min. speed (m/s) 0.73 1.46 2.92

Max. speed (m/s) 2.92 5.84 11.68

Min. pause time (s) 400 200 100

Max. pause time (s) 4000 2000 1000

Mean cross time (s) 48 24 12

Fig. 6. Simulation settings

VI. CONCLUSION

In this paper, we showed that shared memory, a pro-

gramming paradigm that is widely adopted for parallel pro-

gramming, can be realized on mobile devices. As mobile

applications for public services such as transportation be-

come increasingly pervasive, we envision the opportunity to

piggyback systems software such as DIPLOMA onto large

numbers of mobile devices, realizing a powerful mobile com-

puting platform that can offload communications from cellular

networks and computation from servers. This paper takes a

step towards this vision, investigating shared memory as an

alternative programming model to client-server.
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