
Incremental Specialization of Network Programs
Fabian Ruffy

Zhanghan Wang
New York University

Gianni Antichi
Politecnico di Milano and Queen

Mary University of London

Aurojit Panda
Anirudh Sivaraman

New York University

Abstract
Programmable network devices process packets using lim-
ited time and space. Consequently, much effort has been
spent making network programs run as efficiently as pos-
sible. One promising line of work focuses on specializing
the implementation of a network program to a particular—
presumed constant—control-plane configuration. However,
while some parts of the control plane configurations are con-
stant for long periods of time, others change frequently, and
in bursts (e.g., due to routing table updates).
Thus, any approach that specializes a network program

with respect to control-plane configurations must be in-
cremental: it should be able to tell quickly whether a new
control-plane update will affect the program’s implementa-
tion and recompile the program only when its implemen-
tation must change. We describe several benefits of such
an approach, including reducing resource use on line-rate
pipelines and improving the memory footprint of packet
classification. We explore our ideas with a prototype, Flay,
an incremental partial evaluator that optimizes P4 programs
by treating control-plane entries as constant. Flay can reduce
resources in the implementations of Tofino programs. Flay
can also determine in 100s of milliseconds whether a control-
plane update will change a program’s implementation. We
conclude by outlining several avenues for future work.

CCS Concepts
• Networks→ Programmable networks; • Software and
its engineering → Compilers; Incremental compilers.

Keywords
Programmable Networks, SDN, Specialization, Partial Evalu-
ation, Incremental Computation, P4, eBPF/XDP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696870

ACM Reference Format:
Fabian Ruffy, Zhanghan Wang, Gianni Antichi, Aurojit Panda,
and Anirudh Sivaraman. 2024. Incremental Specialization of Net-
work Programs. In The 23rd ACM Workshop on Hot Topics in Net-
works (HOTNETS ’24), November 18–19, 2024, Irvine, CA, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3696348.3696
870

1 Introduction
Packet-processing programs on network devices (e.g., Smart-
NICs, switches, networking stacks) must rapidly process
packets with limited resources (e.g., tables, ALUs, cores, CPU
cycles), while simultaneously supporting many different
features (e.g., ACLs, routing, NATs). Compilers for packet-
processing languages [10, 32, 36, 46, 48, 67, 76] play an impor-
tant role in determining the final resource requirements and
performance of such programs. Typically, compilers trans-
late the packet-processing program into an implementation
when first authored, leaving the implementation unchanged
over the program’s lifetime.
This “one-and-done” approach leaves out many opportu-

nities to improve implementation over a program’s lifetime.
In addition to the program’s source code, the program’s
resource usage is also determined by control-plane config-
urations (e.g., ACL or forwarding rules). For instance, if an
ACL table is empty, it can be removed, making room for addi-
tional features. Such specializations are especially beneficial
for “kitchen-sink” programs that capture the union of all
possible features [29, 66], where only a subset of features is
active at any time. Prior projects have leveraged this obser-
vation: they treat control-plane configurations as constant
inputs to a packet-processing program and introduce a spe-
cializing compiler to further optimize the implementation of
the program before it is run [1, 23, 51].

In reality, however, control-plane configurations are pseudo-
constant: many parts of the control plane only change in
response to policy changes, maintenance, or failures (Fig. 1)
and are thus infrequent. Other parts, however, change fre-
quently (e.g., IP routes, NATs). Control-plane updates can
also occur in bursts, with changes happening at once quickly
followed by a long quiescence [37]. Given this pattern, our
core claim is that any specializing compiler must be able to
respecialize a program quickly when control-plane constants
change. More so, because recompiling network programs
is expensive and many control-plane updates do not affect

https://doi.org/10.1145/3696348.3696870
https://doi.org/10.1145/3696348.3696870
https://doi.org/10.1145/3696348.3696870

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Ruffy et al.

Rate of change

(5) Packets

(4) Network flows

(3) Routing/NAT/
forwarding/firewalls

(1) Data plane
 source

(2) Control plane policy
 (Encapsulation/BGP/BFD)

Days Nanoseconds
Figure 1: Varying rate of change of network program input.

the program implementation, the runtime must decide when
respecialization is actually needed. Hence, to be effective,
such compilers must be (1) control-plane-triggered so that
they continuously respecialize program implementations in
response to control-plane changes and (2) incremental, to
perform as little processing as possible on program sources
and control-plane configurations for each update.

We describe a design sketch for such an incremental com-
piler, operating as a shim layer between the network con-
troller and the data plane (§2). We also describe several tan-
gible benefits enabled by this approach, such as saving hard-
ware resources, and optimizing the memory footprint and
performance of packet classifiers. To demonstrate that our
call for an incremental specializing compiler is feasible, we
build a prototype, Flay. Flay is a partial evaluator [42] that
combines several techniques (dead-code elimination, con-
stant propagation, table inlining) to specialize P4 programs.
Flay leverages the fact that P4 is a restricted domain-specific
language (DSL) with a few core primitives (e.g., tables, con-
trol program) to construct SMT formulae that can quickly
identify when recompilation is necessary. This allows Flay to
process a control-plane update within ~100 milliseconds and
avoid recompilation for all control plane updates that do not
require it. By treating control variables as pseudo-constants
Flay can also save pipeline resources for Tofino programs.

Flay is just a start to a broader research agenda. We outline
several avenues for future work. First, for the control-plane
updates that do trigger respecialization, we plan to use Flay
as a vehicle to explore the tradeoff between recompilation
time and specialization quality. Second, during respecial-
ization, we are still bottlenecked by existing device compil-
ers that monolithically compile the entire program, causing
much longer compile times than necessary. We can push in-
cremental specialization much further by (1) rearchitecting
device compilers to also operate incrementally, e.g., by only
recompiling the tables in the program that actually changed
and (2) through hardware support for partial configuration.

2 Control-Plane-Driven Specialization

Context. A programmable networking device contains at
least one programmable block (e.g., thematch-action pipeline
in Tofino [16] or eBPF hooks in the Linux kernel). This

Program switch [66] scion [22] Beaucoup [12] ACCTurbo [3] DTA [45]
Time 106 s 38 s 22 s 28 s 25 s
Table 1: bf-p4c [16] compile times for Tofino P416 programs.

programmable block is configured by loading a binary pro-
duced by translating a network programwritten in a domain-
specific language such as P416 [10], eBPF written in restricted
C [30], microcode [78], or NPL [9]. Network programs writ-
ten in these languages also define a control-plane interface
to influence packet-processing behavior of the program dur-
ing runtime. The control-plane interface is specific to each
program. Prominent examples of this interface are tables in
P4 or maps in eBPF. Other common instances of objects that
can be changed at runtime are meters, qdiscs, or stateful reg-
isters. The intended behavior of a particular control-plane
update is defined in specifications such as P4Runtime [14],
Openflow [50], SAI [56], or NETCONF [24].
Our goal. We want to develop a compiler that can specialize
network programs given a control-plane configuration. This
compiler must be incremental with respect to the control
plane: The compiler must support automatic respecialization
whenever control-plane configurations change, without in-
curring substantial time on every update—given that most
updates do not affect program implementation. We do not
consider traffic profiles when specializing because trafficmay
change more rapidly than control-plane configurations [46].
Why an incremental, specializing compiler? Even though
control-plane updates occur less frequently than packet ar-
rivals in the data plane, they do change from time to time,
often in response to external events like routing changes,
and often in bursts. At the same time, most control-plane
updates do not require recompilation of the specialized pro-
gram because they do not change program semantics. Exist-
ing specializing tools such as Morpheus [51], Pipeleon [75],
or ESwitch [52] approach this problem by either introducing
resource-consuming fall-back datapaths or recompiling the
data-plane program every time the control-plane issues an
update. When control-plane updates arrive in bursts of hun-
dreds of rules in a few seconds [33, 39–41], recompiling a
network program from scratch, which can take several tens
of seconds (Tbl. 1), is too slow for a specializing compiler
to keep up. Even more recent incremental recompilation
approaches require on the order of seconds to complete re-
compilation [19, 28, 58, 74]. A specializing compiler that is
unable to quickly distinguish between a trivial update that
doesn’t need recompilation (e.g., adding a new NAT entry)
and a major data-plane change (e.g., enabling an IPv6 ACL
table) will be stuck constantly respecializing.
Our insight. In any network program, we can distinguish
runtime-dependent variables into two types: the data-plane
variable, which depends on data-plane input (e.g., variables

Incremental Specialization of Network Programs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA B C

Specializing compiler

Control plane

Data planeA* B C

RecompileAffected? Behavior change?

Control-plane update

(1) (2) (3) (4)(1)

Figure 2: Control-plane-triggered, incremental specialization. Letters describe objects configurable by the control plane.

parsed from a packet header), and the control-plane variable,
which depends on control-plane input (e.g., an ACL entry
which decides whether a packet is forwarded or dropped).
For example, in P4, data-plane variables are sourced from the
packet through parser extraction calls, whereas control-plane
variables are stored in tables and stateful registers. In eBPF
on the other hand, data-plane variables are sourced from
reads of the packet metadata structure (e.g., sk_buff), and
control-plane variables are stored in maps (e.g., BPF maps).
An incoming packet results in a concrete assignment to the
data-plane variables in the program. Similarly, a control-
plane update results in an assignment to a subset of control-
plane variables.
Any control-plane update can be directly mapped to a

component in the data plane (e.g., a table, register, or map).
We can use this mapping to implement an incremental com-
piler. Not every control-plane update introduces a semantic
change. Many control-plane entries just increase the like-
lihood for an already existing data-plane program path to
be taken. This allows us to implement a form of taint track-
ing which lets us quickly identify the affected components.
Restrictions in networking DSLs such as a lack of pointer-
based indirection, unbounded loops, or jumps make taint
tracking tractable. With a taint-tracking system in place, we
only need to check whether a particular component’s be-
havior has changed given an update. The way we compute
these behavioral semantics, identify affected components,
and check quickly whether a change is necessary depends
on the particular incremental specialization technique we
use. We show a concrete example in §4.
A Control-Plane-Triggered Compiler. Fig. 2 shows a sketch
of our proposed approach. (1) The control-plane-triggered
compiler is intended to be invoked on every control-plane
update and provides feedback on whether a control-plane
update requires recompilation. (2) Once a new update is sent
to the compiler, it identifies the affected program compo-
nents based on the control-plane variables “tainted” by the
control-plane update. (3) After identifying the affected com-
ponents, the compiler checks whether the semantics of those
data-plane components change. (4) For components that do
not need changes, the compiler will forward the update to

the device. If the compiler’s query indicates that the behav-
ior of a component in the data-plane program will change,
the compiler needs to recompile that component before the
control-plane update can be installed onto the device. This
recompilation (if needed) is done by the device-specific com-
piler.

3 Specialization Use Cases

Control-plane-triggered specialization as described in §2 can
improve resource usage across different network devices. We
outline several kinds of specialization use cases.
Resource savings over a program’s lifetime. On RMT-style
pipelines with hard constraints on the number of computa-
tion units, tables, and stateful memories, we can substantially
save on hardware resources by specializing to control-plane
configurations. As an example, Fig. 3 describes how the im-
plementation of a single P4 table can change in response to
different control-plane updates. Initially, the table is empty
and can be removed entirely (impl. A). We then insert a
single entry, a ternary match with a 0 mask that executes
set(0x800) as its action. Here, we can inline the table action
and save the cost of a table lookup. We then replace the exist-
ing entry with a ternary match that uses the full mask (impl.
B). This is effectively an exact match entry. Because there is
no other entry in the table, we can change the match type
of the key, saving Ternary Content Addressable Memory
(TCAM) resources. Once we insert entry 2, the table must
be implemented as a ternary table (impl. C). The last entry
(3) does not change the behavior of the table, and hence no
recompilation is needed. Note that, in both implementations
C and D, the unused drop action is removed from the table,
freeing up computation units.
Parser specializations. Several specializations are also possi-
ble for parsers in network programs. The parse_break com-
mand in NPL [9] temporarily suspends the parser to perform
table lookups. If the accessed table is empty, we can remove
entire parse branches that depend on this particular lookup.
P4 Parser value sets (PVS) [15, §13.11] serve a similar func-
tion. We can free the TCAMs and SRAMs on a PVS that is
not configured. Another network-program-specific special-
ization is parser-tail pruning. Once we have specialized the

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Ruffy et al.

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: ternary;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

control Ingress(...) {

}

control Ingress(...) {

 hdr.eth.type = 0x800;

}

(2). Insert entry 1:
[key: 0x1, mask: 0x0]
 → set(0x800)

(3). Replace entry 1:
[key: 0x2, mask: 0xF] → set(0x900)

(4). Insert entry 2:
[key: 0x5, mask: 0x8] → set(0x700)

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: exact;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

control Ingress(...) {

 action set(bit<16> type) {

 hdr.eth.type = type;

 }

 table eth_table {

 key = {hdr.eth.dst: ternary;}

 actions = {

 set; drop; noop;

 }

 default = noop;

 }

 eth_table.apply();

}

(1). Initial configuration:
 empty table

A

B
C D

(5). Insert entry 3:
[key: 0x6, mask: 0x7]
 → set(0x200)

Figure 3: For the program on the left, we show control-plane updates 1–5 and their effect on data path implementation.

program, we can check whether the parser itself is doing
unnecessary work. Any header at the tail of the parser that
is not accessed in the program could be classified as payload.
Reducing the amount of parse calls can reduce PHV usage
in Tofino or improve packet-processing latency in OvS [53].
Savings in other hardware resources. One, the Tofino pro-
grammable switch supports the use of action profiles to sup-
port actions (e.g., setting a packet’s output port metadata)
that are shared among tables. If an action profile is empty,
an incremental compiler can specialize the implementation
of all tables associated with this action profile. Two, we can
specialize device-specific functions. Consider a hardware
unit that computes a checksum on a set of headers. Further,
let’s assume that one of these headers 𝐻 is set as part of
some table action 𝐴 in table 𝑇—as opposed to being parsed
out of an incoming packet. If there is no control-plane entry
for 𝑇 that uses 𝐴 as its action, we know that 𝐻 is invalid,
and hence the checksum will also be invalid, allowing us to
directly compute the checksum result, and saving us a check-
sum unit. Third, if a header is only written by one action
and this particular action does not exist in the control-plane
configuration, we can simply remove the header in the RMT
pipeline to free up packet-header-vector (PHV) resources.
Specializing packet-classification. We can specialize data
structures used in the data plane to classify packets based
on the actual patterns present in the active control-plane
configuration. Often, these techniques involve choosing a
less expensive data structure for the given network device.
For example, a common, but expensive data structure to
classify packets is the TCAM. TCAMs allow matching on
header fields based on bitmasks. If we can tell from the cur-
rent control-plane configuration that only few or no masks
at all are necessary, we can replace the TCAM with a sim-
pler matching data structure, e.g., a Semi-TCAM (STCAM)
in AMD devices [5]. ESwitch [52] and Morpheus [51] have
shown how we can apply similar specializations to software

packet-processing devices, such as Open vSwitch (OVS) [55]
and eBPF, respectively. NeuroCuts [47] and NuevoMatch [60]
train neural networks for more efficient packet classification
by mapping a control-plane configuration to an efficient
lookup data structure.
How incremental compilation could help. In all of the use
cases below, knowledge of the currently active control-plane
configurations can help a compiler specialize the underlying
implementation of the data-plane program. Further, if we
had an incremental compiler [63], it could localize the com-
piler’s effort to specific aspects of the data-plane program.
For instance, in Fig. 3, all of the control-plane updates (and
hence all of the specializations) pertain to the implemen-
tation of a single table, allowing the incremental compiler
to ignore the rest of the data-plane program. Similarly, if
parser compilation were treated independently of the rest
of the program, we could specialize the parser separately
in response to which headers are accessed by control-plane
entries. Finally, in the context of packet classification, the
control-plane update tells us which specific table’s imple-
mentation to focus on, permitting us to specialize that alone.

4 Feasibility Study

As a preliminary feasibility study, we built Flay. Flay im-
plements incremental partial evaluation for P4 programs.
Partial evaluation [42] is a program optimization technique
which specializes a program by treating some inputs as con-
stants. Flay specializes P4 programs subject to their control-
plane configuration by continuously reoptimizing the run-
ning P4 program based on incoming control-plane updates.
We picked partial evaluation because, simply by eliminat-
ing newly dead code and inlining constants based on the
current control-plane configs, we can already implement
many of the resource-saving specializations discussed in §3.
Flay supports P4 program specialization for various targets
(BMv2 [7], Tofino [16], or Xilinx Versal [4]). We also believe

Incremental Specialization of Network Programs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Annotated P4C-IR

Data-plane expressions

Control-plane entries

Control-plane assignments

Specializing compiler

Dead-code elimination

Constant propagation

Table inlining

P4 Program

Specialized P4 Program

On control-plane updateOn semantics changeOnce

Rate of change:

Figure 4: Flay’s design.

that Flay can generalize to packet-processing environments
such as restricted C for eBPF [30], NPL [9], or microcode [78].
Flay is available at https://github.com/nyu-systems/flay.

4.1 Flay Overview

Flay implements incremental specialization by representing a
network program as a combination of data-plane expressions
and control-plane assignments. We can ask specialization
queries by substituting the control-plane assignments into
placeholders within the data-plane expressions. Fig. 4 shows
the high-level workflow of Flay.
Data-plane expressions. We use a simple data-flow analy-
sis coupled with state-merging [6, §5.6] to generate data-
plane expressions. For any input program, Flay first com-
putes the data-plane semantics of the program and annotates
program points of interest (e.g., if-statements, match-action
table execution, map lookups, or variable assignments) with
a data-plane expression. The control-plane variables within
the expressions act as a placeholder and are later substi-
tuted with control-plane assignments. Data-plane variables
can assume any value since we do not specialize based on
traffic profiles. Our state-merging approach makes any pro-
gram point annotation hermetic, i.e., we can evaluate queries
on each annotated program point independently. Lines 15–
20 in Fig. 5a demonstrate how we use state-merging to an-
notate each program line with a snapshot of the value of
egress_port. If the table does not have a control-plane entry,
port_table_configured is false and egress_port will evalu-
ate to 0. Hence, we can simplify the assignment on line 12
to h.eth.dst = 0xAAAAAAAAAAAA. The type of specialization
we use influences the number of program points (and hence
the work required on each control-plane update). For dead-
code elimination we may just want to annotate if-statements,
but for constant substitution we may need to annotate any
variable read

1 control Ingress(...) {
2 action set(bit<9> port_var) {
3 egress_port = port_var;
4 }
5 table port_table {
6 key = {h.eth.dst: exact;}
7 actions = {set; noop;}
8 }
9 apply {
10 egress_port = 0;
11 port_table.apply();
12 h.eth.dst = egress_port == 0 ? 0xAAAAAAAAAAAA : 0xBBBBBBBBBBBB
13 }
14 }
15 # Symbolic value of egress_port variable after executing a line:
16 # Line 9: @egress_port@
17 # Line 10: 0
18 # Line 11: |port_table_configured| && |port_table_action| == "set" ?
19 # |port_table_var| : 0
20 # Line 12: *unchanged*

(a) P4 program setting a port variable based on a table entry.

| port_table_configured | : false

| port_table_configured | : true
| port_table_action |: @h.eth.dst@ == 0xDEADBEEFF00D ? "set" : "noop"
| port_table_port_var |: 0x1

@h.eth.dst@ == 0xDEADBEEFF00D

| port_table_port_var |: 0x1 0x0
True False

C

0x0 B

(1). Initial
configuration:
 empty table

(2). Insert entry 1:
[key: 0xDEADBEEFF00D] → set(0x01)

always false

| port_table_configured || port_table_configured |

| port_table_action | == "set" 0x0
true false

| port_table_port_var | 0x0
true false

A

(b) Value of egress_port at line 12 after each entry update.
Figure 5: Flay’s representation of egress_port. |x| denotes a
control-plane symbol; @x@ a data-plane symbol. Entries be-
low the dotted line are the active control-plane assignments.

Control-plane assignments. We represent control-plane en-
tries as a set of control-plane variable assignments. This rep-
resentation implements the semantics of the control plane as
described by the appropriate specification (e.g., P4Runtime).
For example, entries that are duplicate or eclipsed by higher-
priority entries (and thus have no effect) are omitted in the
set of control-plane assignments. To infer the initial assign-
ment set for any configurable data-plane element we consult
the device specification. Flay maintains a map which asso-
ciates a control-plane variable with the set of program points
it can influence. On each control-plane update, Flay retrieves
all the affected program points from this mapping. For any
affected program point, Flay substitutes the control-plane
assignments into the expressions associated with the point.
Specialization queries.Once Flay has combined the gathered
data-plane expressions with the initial control-plane assign-
ments it specializes the program by asking queries on the
joint representation. Typically, the query indicates that the
value of the expression has not changed and Flaywill forward
the update directly to the network device without trigger-
ing recompilation. If any program point indicates a change
in behavior, Flay must trigger the reoptimization process

https://github.com/nyu-systems/flay

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Ruffy et al.

for the affected data-plane components. We currently ask
two types of queries using Flay: 1) Is this particular piece of
code executable and 2) Can we replace this program variable
with a constant? Concretely, we remove unnecessary table
dependencies by deleting unused actions, inline P4 tables
which always execute the same action, simplify extern calls,
and replace variables and conditions with constants. Flay
then passes the specialized program to the device-specific
compiler, which optimizes it further. We evaluate some of
the benefits of these incremental specializations in §4.2.
An example. Fig. 5b shows how Flay uses a constant propa-
gation query to compute the value of egress_port at line 12.
The data-plane model in Block A represents all the possible
values egress_port can assume at this line. After obtaining
this general representation, we specialize it using the ini-
tial control-plane assignment (Block B). The control-plane
specification for this device prescribes that an empty table
executes the default action, which does nothing here. Hence,
the assignment sets port_table_configured to false, which
causes egress_port to be 0. After receiving an update, we
can match on a key field and execute the set(0x01) action,
which sets egress_port to 1 (Block C). There are now two
possible outcomes for the value of egress_port, 0 or 1.
Processing updates quickly. Since, once computed, data-plane
expressions do not change, Flay performs extensive pre-
processing on expressions to quickly compute queries after
control-plane updates. Preprocessing increases initial analy-
sis time but greatly reduces query time. (1) Flay reduces the
expression complexity by applying constant folding, com-
mon subexpression elimination, and strength reduction. (2)
Flay converts each data-plane expression into a represen-
tation that supports fast incremental checking specialized
towards the particular query. For example, for efficient ex-
pression substitution we use Z3’s [21] e-matching [20] im-
plementation. Instead of e-matching, we could also use an
incremental Datalog evaluation API such as Souffle [62].
Currently, Flay does not support incrementality well in

scenarios where tables with complex match keys have many
control-plane entries. We show an example of Flay’s perfor-
mance degradation in such scenarios in §4.2. The cause is
an inefficient control-plane representation. Since we model
the potential matches of an incoming key against all table
entries as a single and deeply nested expression, complex
keys coupled with large tables can produce a very large ex-
pression. Substituting such a complex key expression into
a data-plane annotation and checking whether the annota-
tion resolves to a constant can be slow. To make reasonably
fast decisions we compromise on Flay’s sensitivity. Once
a certain threshold of entries (e.g., 100) has been reached,
we overapproximate: we assume the entries in the table

P4 Program Program
statements

Compile
time

Data-plane
analysis time

Update
analysis time

scion[22] 582 38s 2s 90ms
switch [66] 786 106s 9s 90ms
middleblock [2] 346 2s 0.6s 5ms
dash [69] 509 2s 1.5s 12ms

Table 2: Flay evaluation times for P4 programs. Compilation
is from scratch. Flay’s data-plane analysis step runs once and
skips the parser. At runtime, Flay only runs update analysis.

cover all its possible actions and action parameters. For ex-
ample, in Fig 5b, overapproximation would assign *any* to
port_table_action and port_table_port_var, which would
cause the computed value of egress_port to revert to the
model shown in Block A.
In practice, crossing the threshold rarely requires respe-

cialization because tables with many entries likely cover
most of their possible paths already. Drawing from prior
techniques [27, 33, 77], we are developing our own compact
control-plane representation to speed up update processing
with complex control-plane configurations.

4.2 Evaluating Flay

We evaluate how Flay specializes the SCION [22] border
router P4 programs written for the Tofino 2 [17] switch. We
chose the SCION programs for evaluation because, next to be-
ing moderately complex (~1700 LoC), they are supplied with
representative control-plane configurations. We use this pro-
gram to answer questions on specialization, incrementality
support, and analysis time.
Can specialization save resources? First, we compile the
SCION program without applying Flay’s specialization. The
program requires the maximum number of Tofino 2 stages.
We then specialize the SCION program using the supplied
configuration. This configuration does not use IPv6 and all
the IPv6 program paths are unused. After removing these
unused paths, the program requires 20% fewer stages.
What is the cost of initial data-plane analysis? Our state-
merging data-plane analysis is sensitive to programs with
many control-flow statements [49]. The initial pass through
the program is cheap, but the generated data-plane expres-
sions can become deeply nested. Preprocessing expressions
for incrementality support can quickly become slow. To ac-
celerate processing for large programs (e.g., switch.p4) we
added an option to skip parser analysis. Since Flay’s spe-
cializations focus on constructs in the control, skipping the
parser has little impact on their effectiveness. We evaluate
Flay’s complexity on a suite of sample programs. The in-
crease is exponential in terms of the number of control paths.
Nevertheless, even for large, complex programs, we can com-
plete our initial analysis within a few minutes (Tbl. 2).
What influences Flay’s update processing speed? We use a
fuzzer [70] to generate 1000 unique IPv4 entries and insert

Incremental Specialization of Network Programs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Total updates installed Analysis time for 1 incoming update
Precise Overapproximated (>100 entries)

1 ~1ms –
10 ~5ms –
100 ~100ms ~1ms
1000 ~4000ms ~1ms
10000 ~265319ms ~1ms

Table 3: Influence of installed updates on Flay’s update pro-
cessing times for middleblock.p4 [2].

the entries into the SCION IPv4 forwarding table to test how
Flay handles a burst of semantics-preserving updates. Flay
can determine within a second that the batch of updates does
not require program recompilation. We then send a batch
of updates that enables the previously unused IPv6 paths
in the SCION program. Flay determines respecialization is
necessary and triggers the recompilation process. After re-
compilation, the SCION program requires the maximum
number of stages again because all program paths are used.
Tbl. 2 shows that Flay is not very sensitive to program com-
plexity. While the time required to process updates increases
with program complexity, it generally stays below 100 ms.

Conversely, as discussed in §4, Flay slows down when a
complex table has many entries. An example of such a table is
the Pre-Ingress ACL table of Google’s Middleblock P4 switch
model [2]. To characterize the slowdown, we initialize this
ACL table with varying number of entries, then send a single
update and measure how much time Flay requires to make a
decision. Tbl. 3 shows the results. The precise update imple-
mentation, which evaluates all entries, already takes 100 ms
at only 100 installed entries. Once we overapproximate the
entries, update processing time becomes low again.

5 Related Work
Incremental computation [59] is a mature field with a wide
range of applications [13, 42, 43, 64, 65]. Recently, work on
JIT compilers [73] and feedback-directed optimization [11]
articulated the need for incremental specialization.
For network programs, many specialization frameworks

use either packet traces or control-plane configurations as in-
put. We classify these into frameworks which specialize net-
work programs once before deployment (offline) and frame-
works that continuously specialize the program (online).
Offline-specialization tools. In the context of P4, P5 [1] pro-
poses control-plane-based optimization to simplify depen-
dencies between P4 tables. P2GO [72] is a profile-guided
specialization tool where a profile is the combination of a
packet trace and the expected control-plane configuration.
Parasol [35] uses traffic profiles to generate data structures
optimized to that profile. NFReducer [23] and PacketMill [25]
specialize network functions chains by applying a series of
framework (e.g., ClickNF [44]) optimizations based on initial
control-plane configurations. mSwitch [38] inlines switching
rules within the VALE [61] software switch. Relative to these

tools, our approach is to specialize continuously, in response
to every control-plane update.
Online-specialization tools. Bhatia et al. [8] specialize the
Linux network stack by inlining installed IPv4 routes and
bridging route changes using a NAT until respecialization
has completed. ESwitch [52] and Hoda [53] continuously
specialize OvS. ESwitch optimizes OvS by changing packet-
matching templates based on user-supplied traffic and flow
entry patterns. Hoda instead produces a new, specialized
parser andmegaflow cache from existing cache rules. Pipeleon
is a profile-guided specialization framework targeting P4
SmartNICs [75]. Morpheus [51] performs profile-guided op-
timization for eBPF. To deal with input profile changes, these
tools respecialize on each control-plane update or periodi-
cally trigger recompilation. Our approach can defer recom-
pilation until program semantics change.

6 Conclusion and Future Outlook
This paper argues for control-plane-triggered and incremen-
tal compilation as a new way of thinking about compilers for
packet processing. While our initial results are encouraging,
we see at least three broad areas where work is necessary.

First, while we make every attempt to avoid recompilation
on as many control-plane updates as possible, we eventu-
ally have to recompile when a control-plane update triggers
a change in semantics. In such cases, recompilation times
should ideally be low, but, currently, we are at the mercy of
device-specific compilers that treat the whole program as a
monolithic unit to be compiled from scratch. Recent work on
modularity in network programming languages [26, 68, 71]
and hardware support for partial reconfiguration [71, 74, 79]
points the way towards recompilation of just the modules
(such as specific tables) that have changed. Second, we plan
to use Flay as a vehicle to explore tradeoffs between special-
ization time and specialization quality to further decrease
recompile times in response to control-plane updates. Third,
we plan to extend these ideas to other programmable net-
work ecosystems such as eBPF/XDP [36], DPDK-based sys-
tems [31, 34, 55, 57], or SmartNICs [4, 18, 54].

7 Acknowledgements
We would like to thank the anonymous HotNets reviewers
for their encouraging feedback. We are also grateful to Nate
Foster and Liangcheng Yu for their insightful comments on
paper drafts and the project. This work is supported in part
by an NSF CAREER award (2340748), NSF grant 2008048,
2145471, and a Google Cyber NYC Research Award. This
work was also partially supported by the European Union -
Next Generation EU under the Italian National Recovery and
Resilience Plan (NRRP), Mission 4, Component 2, Investment
1.3, CUP D43C22003080001, partnership on “Telecommuni-
cations of the Future” (PE00000001 - program “RESTART”).

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Ruffy et al.

References

[1] Anubhavnidhi Abhashkumar, Jeongkeun Lee, Jean Tourrilhes, Sujata
Banerjee,WenfeiWu, Joon-Myung Kang, and Aditya Akella. P5: Policy-
driven optimization of P4 pipeline. In ACM SOSR, 2017.

[2] Kinan Dak Albab, Jonathan Dilorenzo, Stefan Heule, Ali Kheradmand,
Steffen Smolka, Konstantin Weitz, Muhammad Tirmazi, Jiaqi Gao,
and Minlan Yu. SwitchV: Automated SDN switch validation with P4
models. In ACM SIGCOMM, 2022.

[3] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. Aggregate-based congestion control for pulse-wave DDoS
defense. In ACM SIGCOMM, 2022.

[4] AMD. AMD versal adaptive SoCs. https://www.amd.com/en/product
s/adaptive-socs-and-fpgas/versal.html. Accessed: 2024-10-22.

[5] AMD. Content addressable memory (CAM). https://www.xilinx.com
/products/intellectual-property/ef-di-cam.html. Accessed: 2024-10-22.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 2018.

[7] Antonin Bas. The reference P4 software switch. https://github.com/p
4lang/behavioral-model, 2014. Accessed: 2024-10-22.

[8] Sapan Bhatia, Charles Consel, A-F Le Meur, and Calton Pu. Automatic
specialization of protocol stacks in operating system kernels. In 29th
Annual IEEE International Conference on Local Computer Networks,
2004.

[9] Broadcom. NPL: Open, high-level language for developing feature-rich
solutions for programmable networking platforms. https://nplang.org/,
2019. Accessed: 2024-10-22.

[10] Mihai Budiu and Chris Dodd. The P416 programming language. ACM
SIGOPS Operating Systems Review, 2017.

[11] Dehao Chen, David Xinliang Li, and Tipp Moseley. AutoFDO: Auto-
matic feedback-directed optimization for warehouse-scale applications.
In Proceedings of the 2016 International Symposium on Code Generation
and Optimization, 2016.

[12] Xiaoqi Chen, Shir Landau Feibish, Mark Braverman, and Jennifer
Rexford. Beaucoup: Answering many network traffic queries, one
memory update at a time. In ACM SIGCOMM, 2020.

[13] Charles Consel, Julia L Lawall, and Anne-Françoise Le Meur. A tour of
Tempo: a program specializer for the c language. Science of computer
programming, 2004.

[14] The P4.org consortium. The P4Runtime specification, version 1.3.0.
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html,
December 2020.

[15] The P4.org consortium. The P416 language specification, version 1.2.4.
https://p4.org/p4-spec/docs/P4-16-v1.2.4.html, May 2023.

[16] Intel Corporation. Industry-first co-packaged optics Ethernet switch.
https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html. Accessed: 2024-10-22.

[17] Intel Corporation. Second-generation P4-programmable Ethernet
switch ASIC that continues to deliver programmability without com-
promise. https://www.intel.com/content/www/us/en/products/netwo
rk-io/programmable-ethernet-switch/tofino-2-series.html. Accessed:
2024-10-22.

[18] Intel Corporation. The infrastructure processing unit (IPU). https://ww
w.intel.de/content/www/de/de/products/network-io/smartnic.html,
2022. Accessed: 2024-10-22.

[19] Rajdeep Das and Alex C Snoeren. Memory management in ActiveRMT:
Towards runtime-programmable switches. In ACM SIGCOMM, 2023.

[20] Leonardo De Moura and Nikolaj Bjørner. Efficient e-matching for
SMT solvers. In CADE-21: 21st International Conference on Automated
Deduction, 2007.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

[22] Joeri de Ruiter and Caspar Schutijser. Next-generation internet at
terabit speed: SCION in P4. In ACM CoNEXT, 2021.

[23] Bangwen Deng, Wenfei Wu, and Linhai Song. Redundant logic elimi-
nation in network functions. In ACM SOSR, 2020.

[24] Rob Enns. NETCONF configuration protocol (RFC 4741). IETF Request
For Comments, 2006.

[25] Alireza Farshin, Tom Barbette, Amir Roozbeh, Gerald Q Maguire Jr,
and Dejan Kostić. Packetmill: toward per-core 100-gbps networking.
In ACM ASPLOS, 2021.

[26] Ali Fattaholmanan, Mario Baldi, Antonio Carzaniga, and Robert Soulé.
P4 weaver: Supporting modular and incremental programming in P4.
In ACM SOSR, 2021.

[27] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. Efficient network reachability
analysis using a succinct control plane representation. In USENIX
OSDI, 2016.

[28] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zijian
Zhang, Tong Yun, YingWan, and Bin Liu. Enabling in-situ programma-
bility in network data plane: From architecture to language. In USENIX
NSDI, 2022.

[29] The Linux Foundation. middleblock.p4. https://github.com/sonic-net/
sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4,
2021. Accessed: 2024-10-22.

[30] The Linux Foundation. eBPF: Introduction, tutorials & community
resources. https://ebpf.io/, 2022. Accessed: 2024-10-22.

[31] Massimo Gallo and Rafael Laufer. ClickNF: a modular stack for custom
network functions. In USENIX ATC, 2018.

[32] Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong
Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. Cat:
A solver-aided compiler for packet-processing pipelines. In ACM
ASPLOS, 2023.

[33] Dong Guo, Shenshen Chen, Kai Gao, Qiao Xiang, Ying Zhang, and
Y Richard Yang. Flash: fast, consistent data plane verification for
large-scale network settings. In ACM SIGCOMM, 2022.

[34] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han,
and Sylvia Ratnasamy. SoftNIC: A software NIC to augment hardware.
Technical report, University of California at Berkeley, 2015.

[35] Mary Hogan, Devon Loehr, John Sonchack, Shir Landau Feibish,
Jennifer Rexford, and David Walker. Automated optimization of
parameterized data-plane programs with Parasol. arXiv preprint
arXiv:2402.11155, 2024.

[36] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. The EX-
press Data Path: Fast programmable packet processing in the operating
system kernel. In ACM CoNEXT, 2018.

[37] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent
Vanbever. SWIFT: Predictive fast reroute. In ACM SIGCOMM, 2017.

[38] Michio Honda, Felipe Huici, Giuseppe Lettieri, and Luigi Rizzo.
mswitch: a highly-scalable, modular software switch. In ACM SOSR,
2015.

[39] Danny Yuxing Huang, Kenneth Yocum, and Alex C Snoeren. High-
fidelity switch models for software-defined network emulation. In
Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, 2013.

[40] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, et al. B4: Experience with a globally-deployed soft-
ware defined WAN. In ACM SIGCOMM, 2015.

https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal.html
https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://nplang.org/
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.html
https://p4.org/p4-spec/docs/P4-16-v1.2.4.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.de/content/www/de/de/products/network-io/smartnic.html
https://www.intel.de/content/www/de/de/products/network-io/smartnic.html
https://github.com/sonic-net/sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4
https://github.com/sonic-net/sonic-pins/blob/main/sai_p4/instantiations/google/middleblock.p4
https://ebpf.io/

Incremental Specialization of Network Programs HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

[41] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul
Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dy-
namic scheduling of network updates. ACM SIGCOMM Computer
Communication Review, 2014.

[42] Neil D Jones. An introduction to partial evaluation. ACM Computing
Surveys (CSUR), 1996.

[43] Neil D Jones and Arne J Glenstrup. Program generation, termination,
and binding-time analysis. In Generative Programming and Component
Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002 Pittsburgh,
PA, USA, October 6–8, 2002 Proceedings, 2002.

[44] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. The Click modular router. ACM Transactions on Computer
Systems (TOCS), 2000.

[45] Jonatan Langlet, Ran Ben Basat, Gabriele Oliaro, Michael Mitzen-
macher, Minlan Yu, and Gianni Antichi. Direct telemetry access. In
ACM SIGCOMM, 2023.

[46] Yifan Li, Jiaqi Gao, Ennan Zhai, Mengqi Liu, Kun Liu, and
Hongqiang Harry Liu. Cetus: Releasing p4 programmers from the
chore of trial and error compiling. In USENIX NSDI, 2022.

[47] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural packet classifi-
cation. In ACM SIGCOMM, 2019.

[48] Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma. Merlin: Multi-
tier optimization of eBPF code for performance and compactness. In
ACM ASPLOS, 2024.

[49] Thomas J McCabe. A complexity measure. IEEE Transactions on
software Engineering, 1976.

[50] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 2008.

[51] Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gábor Rétvári, and
Gianni Antichi. Domain specific run time optimization for software
data planes. In ACM ASPLOS, 2022.

[52] László Molnár, Gergely Pongrácz, Gábor Enyedi, Zoltán Lajos Kis, Lev-
ente Csikor, Ferenc Juhász, Attila Kőrösi, and Gábor Rétvári. Dataplane
specialization for high-performance openflow software switching. In
ACM SIGCOMM, 2016.

[53] Heng Pan, Peng He, Zhenyu Li, Pan Zhang, Junjie Wan, Yuhao
Zhou, XiongChun Duan, Yu Zhang, and Gaogang Xie. Hoda: a high-
performance Open vSwitch dataplane with multiple specialized data
paths. In Proceedings of the Nineteenth European Conference on Com-
puter Systems, 2024.

[54] Pensando. A new way of thinking about next-gen cloud architectures.
https://p4.org/p4/pensando-joins-p4.html, 2020. Accessed: 2024-10-22.

[55] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The design and implementation of open vswitch. In USENIX
NSDI, 2015.

[56] Open Compute Project. SAI: Switch abstraction interface. https:
//www.opencompute.org/projects/sai. Accessed: 2024-10-22.

[57] LF Projects. Vector packet processing. https://github.com/FDio/vpp/,
2024. Accessed: 2024-10-22.

[58] Yiming Qiu, Ryan Beckett, and Ang Chen. Synthesizing runtime
programmable switch updates. In USENIX NSDI, 2023.

[59] Ganesan Ramalingam and Thomas Reps. A categorized bibliography
on incremental computation. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1993.

[60] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. Scaling
open vswitch with a computational cache. In USENIX NSDI, 2022.

[61] Luigi Rizzo and Giuseppe Lettieri. VALE, a switched ethernet for
virtual machines. In ACM CoNEXT, 2012.

[62] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann.
On fast large-scale program analysis in datalog. In Proceedings of the
25th International Conference on Compiler Construction, 2016.

[63] Mayer D Schwartz, Norman M Delisle, and Vimal S Begwani. Incre-
mental compilation in magpie. ACM SIGPlan Notices, 1984.

[64] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed
Zaffar. TRIMMER: application specialization for code debloating. In
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, 2018.

[65] Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar,
Sriraman Tallam, and Xinliang David Li. Propeller: A profile guided,
relinking optimizer for warehouse-scale applications. In ACM ASPLOS,
2023.

[66] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy,
Advait Dixit, and Mihai Budiu. DC.p4: Programming the forwarding
plane of a data-center switch. In ACM SOSR, 2015.

[67] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker.
Lucid: A language for control in the data plane. In ACM SIGCOMM,
2021.

[68] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. Composing dataplane programs with 𝜇P4. In ACM SIGCOMM,
2020.

[69] Reshma Sudarshan and Chris Sommers. P4 as a single source of truth
for sonic dash use cases on both softswitch and hardware. https:
//opennetworking.org/2022-p4-workshop-gated/, 2022. Accessed:
2024-10-22.

[70] New York University. ControlPlaneSmith: Generate control-plane
configurations from P4 programs. https://github.com/nyu-systems/rt
smith. Accessed: 2024-10-22.

[71] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and
Aurojit Panda. Isolation mechanisms for high-speed packet-processing
pipelines. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022.

[72] Patrick Wintermeyer, Maria Apostolaki, Alexander Dietmüller, and
Laurent Vanbever. P2GO: P4 profile-guided optimizations. In Proceed-
ings of the 19th ACM Workshop on Hot Topics in Networks, 2020.

[73] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and
Matthias Grimmer. Practical partial evaluation for high-performance
dynamic language runtimes. In Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, 2017.

[74] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piaset-
zky, Arvind Krishnamurthy, and Ang Chen. Runtime programmable
switches. In USENIX NSDI, 2022.

[75] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa,
Omer Shabtai, Yonatan Piasetzky, Matty Kadosh, Arvind Krishna-
murthy, TS Eugene Ng, et al. Unleashing SmartNIC packet processing
performance in P4. In ACM SIGCOMM, 2023.

[76] Qiongwen Xu, Michael D Wong, Tanvi Wagle, Srinivas Narayana, and
Anirudh Sivaraman. Synthesizing safe and efficient kernel extensions
for packet processing. In ACM SIGCOMM, 2021.

[77] Hongkun Yang and Simon S Lam. Real-time verification of network
properties using atomic predicates. IEEE/ACM Transactions on Net-
working, 2015.

[78] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie,
Swamy Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya
Ghobadi. Using Trio – Juniper networks’ programmable chipset – for
emerging in-network applications. In ACM SIGCOMM, 2022.

[79] Liangcheng Yu, John Sonchack, and Vincent Liu. Mantis: Reactive
programmable switches. In ACM SIGCOMM, 2020.

https://p4.org/p4/pensando-joins-p4.html
https://www.opencompute.org/projects/sai
https://www.opencompute.org/projects/sai
https://github.com/FDio/vpp/
https://opennetworking.org/2022-p4-workshop-gated/
https://opennetworking.org/2022-p4-workshop-gated/
https://github.com/nyu-systems/rtsmith
https://github.com/nyu-systems/rtsmith

	Abstract
	1 Introduction
	2 Control-Plane-Driven Specialization
	3 Specialization Use Cases
	4 Feasibility Study
	4.1 Flay Overview
	4.2 Evaluating Flay

	5 Related Work
	6 Conclusion and Future Outlook
	7 Acknowledgements
	References

