Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian,
Hari Balakrishnan

M.LT.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

Switch Data Planes today

Two key decisions on a per-packet basis:

» Scheduling: Which packet to transmit next?

» Queue Management: How long can queues
grow? Which packet to drop?

The long lineage of in-network algorithms

1980s

Ei
%
n

VirtualClock

The long lineage of in-network algorithms

1980s : 1990s »
|GPs| [DitfServ][BLUE]

IwrQ] [RED]|CSFQ|
|VirtualClock|[IntServ]| DRR]

The long lineage of in-network algorithms

1980s 1990s . 2000s >
T T

|GPs] |DiftServ||BLUE]|ECN] [XCP][RCP]
(wrQ] [ReD]|csFq]|Aval[vcp][sRrR]
[VirtuaiClock][intServ] [DRR] [Ri0][CHOKe]

The long lineage of in-network algorithms

1980s 1990s , 2000s | 2010s >
T T 1

[Grs] [Diftserv][BLUE|[ECN] [XCP|[RCP]|IDCTCP |[PDQ]|FCP|
[wrqQ] [ReD] [csFa] [ava] [vcp][sRR] [CoDel J[D?TCP] [pFabric]
[VirtualClock][intServ] [DRR] [RI0][cHOKe] [P1] [DeTail] [PIE]

The long lineage of in-network algorithms

1980s 1990s , 2000s | 2010s >
T T 1

[GPs] [pittserv]|BLUE]|ECN] [XCP|[RCP][DCTCP |[PDQ] [FCP|
[wrqQ] [ReD] [csFa] [ava] [vcp][sRR] [CoDel J[D?TCP] [pFabric]
[VirtuaiClock] [intServ] [DRR] [RI0] [cHOKe] [P1] [DeTail] [PIE]{RC3}MCP!

The Data Plane is continuously evolving

» Each scheme wins in its own evaluation.

» Quest for a “silver bullet” in-network method.

We disagree: There is no silver bullet!

» Different applications care about different
objectives.

» Applications use different transport protocols.

» Networks are heterogeneous.

Our work:

» Quantify non-universality of in-network methods.

» Extend SDN to the Data Plane to handle
in-network diversity.

Quantifying “No Silver Bullet”: Network Configurations

Configuration

Description

CoDel+FCFS

CoDel+FQ

Bufferbloat+FQ

One shared FCFS queue with
CoDel

Per-flow fair queueing with CoDel
on each queue (Nichols 2013)

Per-flow fair queueing with deep
buffers on each queue

Quantifying “No Silver Bullet”: Workloads and Objectives

Workload
Bulk

Web

Interactive

Description
Long-running
bulk transfer flow

Switched flow
with ~ ON/OFF
periods

Long-running
interactive flow

Objective
Max. throughput

Min. 99.9 %ile flow
completion time

Max. throughput
delay

Quantifying “No Silver Bullet”

CoDel+FCFES

CoDel+FQ Bufferbloat+FQ

Quantifying “No Silver Bullet”

CoDel+FQ Bufferbloat+FQ

Quantifying “No Silver Bullet”

Experiment configuration:

Workload: 1 Bulk flow + 1 Web Flow
Network: LTE link with 150 ms min.

CoDel+FQ Bufferbloat+FQ

Quantifying “No Silver Bullet”

Experiment configuration:

Workload: 1 Bulk flow + 1 Web Flow
Network: LTE link with 150 ms min.

Bufferbloat+FQ

Bulk Tpt: 3.9 Mbps

CoDel+FQ

Web Tail FCT: 43 s

Quantifying “No Silver Bullet”

Experiment configuration:

Workload: 1 Bulk flow + 1 Web Flow
Network: LTE link with 150 ms min.

Bulk Tpt: 3.9 Mbps Bulk Tpt: 11.2 Mbps

CoDel+FQ Bufferbloat+FQ

Web Tail FCT: 43 s Web Tail FCT: 21 s

Quantifying “No Silver Bullet”

Experiment configuration:

Workload: 1 Bulk flow + 1 Web Flow
Network: LTE link with 150 ms min.

Bulk Tpt: 3.9 Mbps Bulk Tpt: 11.2 Mbps

CoDel+FQ Bufferbloat+FQ

Web Tail FCT: 43 s Web Tail FCT: 21 s

Quantifying “No Silver Bullet”

CoDel+FCFES

CoDel+FQ Bufferbloat+FQ

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Quantifying “No Silver Bullet”

CoDel+FCFES

Two Interactive on 15 Mbps link.
Codel+FQ gives 700x more tpt/delay

CoDel+FQ Bufferbloat+FQ

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Quantifying “No Silver Bullet”

/ CoDel+-FCFS

Bulk + Web, 15 Mbps link.
Codel+FQ gives Web flow

16% faster tail flow completion
with same Bulk throughput

Two Interactive on 15 Mbps link.
Codel+FQ gives 700x more tpt/delay

CoDel+FQ Bufferbloat+FQ

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Quantifying “No Silver Bullet”

/ CoDel+FCFS

Bulk + Web, 15 Mbps link.
Codel+FQ gives Web flow

16% faster tail flow completion
with same Bulk throughput

Two Bulk on LTE.
Codel+FCFS gives
5% more throughput

¥

CoDel+FQ Bufferbloat+FQ

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Two Interactive on 15 Mbps link.
Codel+FQ gives 700x more tpt/delay

Quantifying “No Silver Bullet”

/\

Bulk + Web, 15 Mbps link.
Codel+FQ gives Web flow

with same Bulk throughput

16% faster tail flow completion

Two Bulk on LTE.
Codel+FCFS gives
5% more throughput

¥

Two Interactive on 15 Mbps link.
Codel+FQ gives 700x more tpt/delay

o}

One Interactive on LTE.
Codel+FCFS gives
200x more tpt/delay

Bufferbloat+FQ

>

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Quantifying “No Silver Bullet”

/\

Bulk + Web, 15 Mbps link.
Codel+FQ gives Web flow

with same Bulk throughput

16% faster tail flow completion

One Interactive on LTE.
Codel+FCFS gives
200x more tpt/delay

5% more throughput

One Bulk on LTE.
Two Bulk on LTE. Bufferbloat+FQ
Codel+FCFS gives 174% more thro

gives

ughput

¥

Codel+FQ gives 700x more tpt/delay

o}

Two Interactive on 15 Mbps link. \
Bufferbloat+FQ

>

Bulk + Web on LTE. Bufferbloat+FQ gives
Web flow: 52% faster tail flow completion,
Bulk flow: 186% more throughput

Why is no single data plane configuration the best?

» Bufferbloat gives the best throughput on
variable-rate links.

» FCFS is preferable to Fair Queuing with
homogeneous objectives.

» Fair Queuing is preferable with heterogeneous
objectives.

So what should the network designer do?

» Don't strive for the best in-network behaviour.

» Instead, architect for evolvability.

» Conceptually, extend SDN to include the data
plane as well.

Flexibility without sacrificing performance
» Provide interfaces only to the head and tail of
queues

» Operators specify only
queue-management /scheduling logic

» No access to packet payloads.

Building such a data plane in four parts

» Hardware gadgets

» Random number generators (RED, BLUE)
» Binary tree of comparators (pFabric, SRPT)
» Look-up tables for function approximation (CoDel, RED)

Building such a data plane in four parts

» Hardware gadgets

» Random number generators (RED, BLUE)
» Binary tree of comparators (pFabric, SRPT)
» Look-up tables for function approximation (CoDel, RED)

» 1/0 interfaces

» Drop/mark head/tail of queue
» Interrupts for enqueue/dequeue
» Rewrite packet fields

Building such a data plane in four parts

» Hardware gadgets

» Random number generators (RED, BLUE)
» Binary tree of comparators (pFabric, SRPT)
» Look-up tables for function approximation (CoDel, RED)

» 1/0 interfaces

» Drop/mark head/tail of queue
» Interrupts for enqueue/dequeue
» Rewrite packet fields

» State maintenance

> Per-flow (WFQ, DRR)
» Per-dst address (PF)

Building such a data plane in four parts

v

Hardware gadgets

» Random number generators (RED, BLUE)

» Binary tree of comparators (pFabric, SRPT)

» Look-up tables for function approximation (CoDel, RED)
1/O interfaces

» Drop/mark head/tail of queue
» Interrupts for enqueue/dequeue
» Rewrite packet fields
State maintenance
» Per-flow (WFQ, DRR)
» Per-dst address (PF)
A domain-specific instruction set

» Expresses control flow
» Implements new functions unavailable in hardware

v

v

v

Feasibility study: CoDel

Input/Output
interfaces
—5

Packet with
timestz
(Router starrpsall

incoming
with timestarrp)

Synthesis numbers on the Xilinx Kintex-7

Resource Usage Fraction
Slice logic 1,256 1%

Slice logic dist. 1,975 2%
I0/GTX ports 27 2%

DSP slices 0 0%
Maximum speed 12.9 million

pkts/s ~10 Gbps

» Small fraction of the FPGA's resources.

» Can be improved by pipelining or parallelizing.

~

Conclusion

» No silver bullet to in-network resource allocation.
» Algorithms will evolve: Data Plane should help

» Reproduce our results:
http://web.mit.edu/anirudh /www /sdn-data-
plane.html

