Extending SDN to the Data Plane

Anirudh Sivaraman, Keith Winstein, Suvinay Subramanian, Hari Balakrishnan

M.I.T.

http://web.mit.edu/anirudh/www/sdn-data-plane.html

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Two key decisions on a per-packet basis:

Scheduling: Which packet to transmit next?

Queue Management: How long can queues grow? Which packet to drop?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(日) (四) (코) (코) (코) (코)

The Data Plane is continuously evolving

- Each scheme wins in its own evaluation.
- Quest for a "silver bullet" in-network method.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Different applications care about different objectives.
- Applications use different transport protocols.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

Networks are heterogeneous.

Quantify non-universality of in-network methods.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Extend SDN to the Data Plane to handle in-network diversity.

Quantifying "No Silver Bullet": Network Configurations

Configuration	Description
CoDel+FCFS	One shared FCFS queue with CoDel
CoDel+FQ	Per-flow fair queueing with CoDel on each queue (Nichols 2013)
Bufferbloat+FQ	Per-flow fair queueing with deep buffers on each queue

Quantifying "No Silver Bullet": Workloads and Objectives

Workload	Description	Objective
Bulk	Long-running bulk transfer flow	Max. throughput
Web	Switched flow with ON/OFF periods	Min. 99.9 %ile flow completion time
Interactive	Long-running interactive flow	Max. <u>throughput</u> delay

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 3.9 Mbps

Web Tail FCT: 43 s

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 3.9 Mbps

Web Tail FCT: 43 s

Bulk Tpt: 11.2 Mbps

Web Tail FCT: 21 s

▲ロト ▲母ト ▲目ト ▲目ト 三目 - のへで

Experiment configuration: Workload: 1 Bulk flow + 1 Web Flow Network: LTE link with 150 ms min. RTT

Bulk Tpt: 11.2 Mbps

Web Tail FCT: 21 s

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Why is no single data plane configuration the best?

- Bufferbloat gives the best throughput on variable-rate links.
- FCFS is preferable to Fair Queuing with homogeneous objectives.
- Fair Queuing is preferable with heterogeneous objectives.

So what should the network designer do?

- Don't strive for the best in-network behaviour.
- Instead, architect for evolvability.
- Conceptually, extend SDN to include the data plane as well.

Flexibility without sacrificing performance

 Provide interfaces only to the head and tail of queues

- Operators specify only queue-management/scheduling logic
- No access to packet payloads.

Hardware gadgets

- Random number generators (RED, BLUE)
- Binary tree of comparators (pFabric, SRPT)
- Look-up tables for function approximation (CoDel, RED)

Hardware gadgets

- Random number generators (RED, BLUE)
- Binary tree of comparators (pFabric, SRPT)
- Look-up tables for function approximation (CoDel, RED)

(日) (國) (필) (필) (필) 표

I/O interfaces

- Drop/mark head/tail of queue
- Interrupts for enqueue/dequeue
- Rewrite packet fields

Hardware gadgets

- Random number generators (RED, BLUE)
- Binary tree of comparators (pFabric, SRPT)
- Look-up tables for function approximation (CoDel, RED)

(日) (國) (필) (필) (필) 표

I/O interfaces

- Drop/mark head/tail of queue
- Interrupts for enqueue/dequeue
- Rewrite packet fields
- State maintenance
 - Per-flow (WFQ, DRR)
 - Per-dst address (PF)

Hardware gadgets

- Random number generators (RED, BLUE)
- Binary tree of comparators (pFabric, SRPT)
- Look-up tables for function approximation (CoDel, RED)

I/O interfaces

- Drop/mark head/tail of queue
- Interrupts for enqueue/dequeue
- Rewrite packet fields
- State maintenance
 - Per-flow (WFQ, DRR)
 - Per-dst address (PF)
- A domain-specific instruction set
 - Expresses control flow
 - Implements new functions unavailable in hardware

《曰》 《聞》 《理》 《理》 三世

Feasibility study: CoDel

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Synthesis numbers on the Xilinx Kintex-7

Resource	Usage	Fraction
Slice logic	1,256	1%
Slice logic dist.	1,975	2%
IO/GTX ports	27	2%
DSP slices	0	0%
Maximum speed	12.9 million	
	pkts/s ~10 Gbps	

- Small fraction of the FPGA's resources.
- Can be improved by pipelining or parallelizing.

Conclusion

- No silver bullet to in-network resource allocation.
- Algorithms will evolve: Data Plane should help
- Reproduce our results: http://web.mit.edu/anirudh/www/sdn-dataplane.html