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Switch Data Planes today

Two key decisions on a per-packet basis:

» Scheduling: Which packet to transmit next?

» Queue Management: How long can queues
grow? Which packet to drop?
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The long lineage of in-network algorithms

1980s 1990s , 2000s | 2010s >
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The Data Plane is continuously evolving

» Each scheme wins in its own evaluation.

» Quest for a “silver bullet” in-network method.



We disagree: There is no silver bullet!

» Different applications care about different
objectives.

» Applications use different transport protocols.

» Networks are heterogeneous.



Our work:

» Quantify non-universality of in-network methods.

» Extend SDN to the Data Plane to handle
in-network diversity.



Quantifying “No Silver Bullet”: Network Configurations

Configuration

Description

CoDel+FCFS

CoDel+FQ

Bufferbloat+FQ

One shared FCFS queue with
CoDel

Per-flow fair queueing with CoDel
on each queue (Nichols 2013)

Per-flow fair queueing with deep
buffers on each queue




Quantifying “No Silver Bullet”: Workloads and Objectives

Workload
Bulk

Web

Interactive

Description
Long-running
bulk transfer flow

Switched flow
with ~ ON/OFF
periods

Long-running
interactive flow

Objective
Max. throughput

Min. 99.9 %ile flow
completion time

Max. throughput
delay
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Why is no single data plane configuration the best?

» Bufferbloat gives the best throughput on
variable-rate links.

» FCFS is preferable to Fair Queuing with
homogeneous objectives.

» Fair Queuing is preferable with heterogeneous
objectives.



So what should the network designer do?

» Don't strive for the best in-network behaviour.

» Instead, architect for evolvability.

» Conceptually, extend SDN to include the data
plane as well.



Flexibility without sacrificing performance
» Provide interfaces only to the head and tail of
queues

» Operators specify only
queue-management /scheduling logic

» No access to packet payloads.
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Building such a data plane in four parts
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Hardware gadgets

» Random number generators (RED, BLUE)

» Binary tree of comparators (pFabric, SRPT)

» Look-up tables for function approximation (CoDel, RED)
1/O interfaces

» Drop/mark head/tail of queue
» Interrupts for enqueue/dequeue
» Rewrite packet fields
State maintenance
» Per-flow (WFQ, DRR)
» Per-dst address (PF)
A domain-specific instruction set

» Expresses control flow
» Implements new functions unavailable in hardware
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Feasibility study: CoDel

Input/Output
interfaces
—5

Packet with
timestz
(Router starrpsall
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Synthesis numbers on the Xilinx Kintex-7

Resource Usage Fraction
Slice logic 1,256 1%

Slice logic dist. 1,975 2%
I0/GTX ports 27 2%

DSP slices 0 0%
Maximum speed 12.9 million

pkts/s ~10 Gbps

» Small fraction of the FPGA's resources.

» Can be improved by pipelining or parallelizing.


~

Conclusion

» No silver bullet to in-network resource allocation.
» Algorithms will evolve: Data Plane should help

» Reproduce our results:
http://web.mit.edu/anirudh /www /sdn-data-
plane.html



