
PANIC: A High-Performance Programmable NIC for Multi-tenant Networks

Jiaxin Lin
University of Wisconsin-Madison

Kiran Patel
University of Illinois at Chicago

Brent E. Stephens
University of Illinois at Chicago

Anirudh Sivaraman
New York University (NYU)

Aditya Akella
University of Wisconsin-Madison

Abstract
Programmable NICs have diverse uses, and there is a need for
a NIC platform that can offload computation from multiple
co-resident applications to many different types of substrates,
including hardware accelerators, embedded FPGAs, and em-
bedded processor cores. Unfortunately, there is no existing
NIC design that can simultaneously support a large number of
diverse offloads while ensuring high throughput/low latency,
multi-tenant isolation, flexible offload chaining, and support
for offloads with variable performance.

This paper presents PANIC, a new programmable NIC.
There are two new key components of the PANIC design that
enable it to overcome the limitations of existing NICs: 1) A
high-performance switching interconnect that scalably con-
nects independent engines into offload chains, and 2) A new
hybrid push/pull packet scheduler that provides cross-tenant
performance isolation and low-latency load-balancing across
parallel offload engines. From experiments performed on an
100 Gbps FPGA-based prototype, we find that this design
overcomes the limitations of state-of-the-art programmable
NICs.

1 Introduction
The gap between network line-rates and the rate at which a
CPU can produce and consume data is widening rapidly [71,
66]. Emerging programmable (“smart”) NICs can help over-
come this problem [32]. There are many different types of
offloads that can be implemented on a programmable NIC.
These offloads, which accelerate computation across all of
the different layers of the network stack, can reduce load
on the general purpose CPU, reduce latency, and increase
throughput [32, 48, 59, 69, 13].

Many different cloud and datacenter applications and use
cases have been shown to benefit from offloading computation
to programmable NICs [13, 48, 59, 42, 32, 37, 49, 46, 62,
47, 30, 36, 70, 69, 35, 55, 45]. However, there is no single
“silver bullet” offload that can improve performance in all
cases. Instead, we anticipate that different applications will
specify their own chains of offloads, and that the operator will
then merge these chains with infrastructure-related offloads
and run them on her programmable NICs. To realize this
vision, this paper presents PANIC, a new scalable and high-
performance programmable NIC for multi-tenant networks

that supports a wide variety of different types of offloads and
composes them into isolated offload chains.

To enable cloud operators to provide NIC offload chains as
a service to tenants, a programmable NIC must support: 1) Of-
fload variety: some offloads like cryptography are best suited
for hardware implementations, while an offload providing a
low-latency bypass for RPCs in an application is better suited
for an embedded core [51]; 2) Offload chaining: to minimize
wasted chip area on redundant functions, the NIC should fa-
cilitate composing independent hardware offload units into
a chain as needed, with commonly-needed offloads shared
across tenants; 3) Multi-tenant isolation: tenants should not
be able to consume more than their allocation of a shared
offload; 4) Variable-performance offloads: there are useful
offloads that are not guaranteed to run at line-rate, as well as
important offloads that run with low latency and at line-rate.

There exist many different programmable NICs [32, 12,
75, 31, 58, 72, 23, 24, 11, 57, 53, 54, 52, 76], but, there is no
programmable NIC that is currently able to provide all of the
above properties. Existing NIC designs can be categorized as
follows, with each category imposing key limitations:

• Pipeline-of-Offloads NICs place multiple offloads in a
pipeline to enable packets to be processed by a chain of
functions [52, 32]. Chaining can be modified in these
NICs today but requires a significant amount of time and
developer effort for FPGA synthesis, and slow offloads
cause packet loss or head-of-line (HOL) blocking.

• Manycore NICs load balance packets across many em-
bedded CPU cores, with the CPU core then control-
ling the processing of packets as needed for different
offloads [23, 24, 53, 54, 57, 72, 58]. These designs suffer
from performance issues because embedded CPU cores
add tens of microseconds of additional latency [32]. Also,
no existing manycore NICs provide performant mecha-
nisms to isolate competing tenants. Further, performance
on manycore NICs can degrade significantly if the work-
ing set does not fit within the core’s cache.

• RMT NICs use on-NIC reconfigurable match+action
(RMT) pipeline to implement NIC offloads. The types
of offloads that can be supported by RMT pipelines are
limited because each pipeline stage must be able to handle
processing a new packet every single clock cycle.



This paper presents the design, implementation and evalua-
tion of PANIC, a new NIC that overcomes the key limitations
of existing NIC designs. PANIC draws inspiration from recent
work on reconfigurable (RMT) switches [21, 67, 68, 27, 16].
PANIC’s design leverages three key principles:

1. Offloads should be self-contained. The set of potentially
useful offloads is diverse and vast, spanning all of the
layers of the network stack. As such, a programmable
NIC should be able to support both hardware IP cores and
embedded CPUs as offloads.

2. Packet scheduling, buffering, and load-balancing should
be centralized for the best performance and efficiency
because decentralized decisions and per-offload queuing
can lead to poor tail response latencies and poor buffer
utilization due to load imbalances.

3. Because the cost of small/medium-sized non-blocking fab-
rics is small relative to the NIC overall, the offloads should
be connected by a non-blocking/low-oversubscribed
switching fabric to enable flexible chaining of offloads.

Following these design principles, this paper makes three
key contributions: 1) A novel programmable NIC design
where diverse offloads are connected to a non-blocking
switching fabric, with chains orchestrated by a programmable
RMT pipeline, 2) A new hybrid push/pull scheduler-and-load
balancer with priority-aware packet dropping, and 3) An anal-
ysis of the costs of on-NIC programmable switching and
scheduling that finds them to be low relative to the NIC as a
whole.

The PANIC NIC has four components: 1) an RMT switch
pipeline, 2) a switching fabric, 3) a central scheduler, and 4)
self-contained compute units. The RMT pipeline provides
programmable chain orchestration. A high performance in-
terconnect enables programmable chaining at line-rate. The
central scheduler provides isolation, buffer management, and
load-balancing. Self-contained compute units may be either
hardware accelerators or embedded cores and are not required
to run at line-rate.

To evaluate the feasibility of PANIC, we have performed
both ASIC analysis and experiments with an FPGA proto-
type. Our ASIC analysis demonstrates the feasibility of the
PANIC architecture and shows that the crossbar interconnect
topology scales well up to 32 total attached compute units.
Our FPGA prototype can perform dynamic offload chaining
at 100 Gbps, and achieves nanosecond-level (<0.8 µs) packet
scheduling and load-balancing under a variety of chaining
configurations. We empirically show that PANIC can handle
multi-tenant isolation and below line-rate offloads better than
a state-of-the-art pipeline-based design. Our end-to-end ex-
periments in a small scale testbed demonstrate that PANIC
can achieve dynamic bandwidth allocation and prioritized
packet scheduling at 100 Gbps. In total, the components of
PANIC, which includes an 8 * 8 crossbar, only consume a
total of 11.27% of the total logic area (LUTs) available on the

Tput
Offload Config (Gbps) Delay

Data Processing
Compression (Lzrw1) HW@300MHz 3.6 0.05-3.3µs
Cryptography (AES-256) HW@300MHz 38.4 407ns
Cryptography (AES-256) CPU@1.5GHz 0.154 −
Network Processing
Authentication (SHA1) HW@220MHz 113.0 0.47-10.8µs
Authentication (SHA1) CPU@1.5GHz 0.192 −
Application Processing
Inference (3-layer-NN) HW@200MHz 120 66ns

Table 1: A breakdown of the performance of different offloads
when implemented in either hardware or software.

Xilinx UltraScale Plus FPGA that we used. The Verilog code
for our FPGA prototype is publicly available 1.

2 Motivation
We discuss in detail the requirements that we envision pro-
grammable NICs in multi-tenant networks ought to meet. We
then explain why existing NICs designs fail to meet them.

2.1 Requirements
1. Offload Variety: There are a large variety of network
offloads, and different types of offloads have different needs.
Not all offloads are best implemented on the same type of
underlying engine. For example, a cryptography offload can
provide much better performance if implemented with a hard-
ware accelerator built from a custom IP core instead of an
embedded processor core. To shed light on this, we experi-
mented with a few different types of offloads using an Alpha
Data ADM-PCIE-9V3 Programmable NIC [12] to evaluate
the behavior of different hardware IP cores that could be used
as on-NIC accelerators, and the Rocket Chip Generator [14]
to perform cycle-accurate performance measurements of a
RISC V CPU to understand the costs of running these offload
with an on-NIC embedded processor. Our results in Table 1
indeed show that offloads for encryption/decryption and au-
thentication are a poor fit for embedded CPU designs and
should be implemented in hardware.

In contrast, an application-specific offload to walk a hash
table that is resident in main memory is better suited for an
embedded processor core because a hardware offload may
not provide enough flexibility [51]. Thus, a programmable
NIC should ideally provide support for both hardware and
software offloads.
2. Dynamic Offload Chaining: In the case of hardware ac-
celerators, it is important to be able to compose independent
offload functionality into a chain/pipeline to avoid wasted
area on redundant functionality. For example, using a pro-
grammable NIC to implement a secure remote memory access
for a tenant may require the tenant to compose cryptography,
congestion control, and RDMA offload engines.

1PANIC artifact: https://bitbucket.org/uw-madison-
networking-research/panic_osdi20_artifact

https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact


Further, as tenants come and go, and as a given applica-
tion’s traffic patterns change, the on-NIC offload chains will
also need to be dynamically updated. This is because differ-
ent network transfers benefit from different sets of offloads.
Further, not every application packet needs every offload. For
example, for a key-value store that serves requests from both
within-DC and WAN-distributed clients, IPSec and/or com-
pression could be offloaded, but only the packets sent over
the WAN may need IPSec authentication and/or compression.

Thus, an ideal programmable NIC should not restrict the
type of offloads that may be simultaneously used, and should
instead support dynamic offload chaining, i.e., switching and
scheduling packets as needed between independent offloads.
3. Dynamic Isolation: Today’s data center servers colocate
applications from different competing tenants [50, 39, 15,
61, 32]. Each tenant may have its own offload chains that
may need to run on a programmable NIC, so it is necessary
for a programmable NIC to provide performant low-level
isolation mechanisms. For example, consider the case that
two tenants A and B are running offload chains where packets
are first uncompressed and then sent to an embedded CPU
for further processing, and packet contents are such that the
workload for tenant B runs at half the rate of that of tenant
A. To support this, the NIC’s mechanisms must ensure fair
packet scheduling at the shared compression offload and that
the slow chain does not cause head-of-line (HOL) blocking
for the other chain. Further, if a third tenant C were to start,
packet processing load across chains may shift. To handle
this, the scheduling policy may need to be reprogrammed.
4. Support for offloads with variable and below line-rate
performance: Some offloads may not run at line-rate. Of
the compression, cryptography, authentication, and inference
offloads that we ran on hardware, only inference was able to
run at 100 Gbps (Table 1), and others ran well below line-
rate. Also, offload performance is variable and sometimes
workload-dependent, incurring significant delay for certain
requests; see, for example, compression and authentication,
whose performance depends on packet size.

These results also show the need for an approach to load-
balancing that can accommodate offloads with variable per-
formance. Slow offloads can be duplicated across multiple
engines (e.g., 3 AES-256 engines) for line-rate operation.
5. High-Performance Interconnect: It is important for a
programmable NIC to be able to provide high throughput
for line-rate offloads. In the case where no offloads or only
low-latency offloads are used, a programmable NIC should
not incur any additional latency. Achieving high performance
is complicated by bidirectional communication, multi-port
NICs, and chaining. An offload that is used for TX and RX
on a dual port NIC needs to operate at four times line-rate to
prevent becoming a bottleneck. When offloads are chained,
a single packet may traverse the on-NIC network multiple
times. Effectively, the NIC must be able to emulate creating
a line-rate connection between each hop in an offload chain.

NIC Offload Multi-Tenant Variable High Offload
Design Chaining Isolation Perf Perf Variety

Pipeline 7 7 7 X 7
Manycore X 7 X 7 X

RMT 7 X 7 X 7

Table 2: Programmable NIC designs compared w.r.t. the
requirements in Section 2.1.

2.2 Limitations of Existing Designs
We argue below that programmable NIC designs today (Fig-
ure 1) lag behind these requirements (Table 2).

2.2.1 Pipeline Designs

Figure 1a illustrates the pipelined programmable NIC design.
In this design, the offloads are arranged in a linear sequence,
i.e., a pipeline. Effectively, each offload looks as though it
is an independent device attached in the middle of the wire
connecting the NIC to a TOR switch. Most existing NICs
with on-board FPGAs located as a “bump-in-the-wire” use
this design [52, 32, 31], and other NICs use this design for
fixed function offloads for TCP checksums and IPSec [6, 38].
Chaining: Chaining offloads is difficult in pipelined designs
because of their static offload topology; the offloads are ar-
ranged in a line. Although packets can be recirculated through
the pipeline as needed, this wastes on-NIC bandwidth and
hurts line-rate performance.
Variable Performance Offloads: A slow offload that does
not run at line-rate can cause HOL blocking in the pipeline
of offloads if the pipeline is stalled, and packet loss if the
pipeline is not. This can be avoided with routing logic to
bypass offloads, but this requires additional buffer memory at
each offload: packet arrivals in Ethernet are bursty [41, 17],
and it common for tens of packets to arrive back-to-back at
line-rate. There would be significant packet loss if offloads
that are not guaranteed to run at line-rate are not allocated
buffer resources. For offloads where running at line-rate is
workload or configuration dependent, the chip area allocated
to per-offload buffers would be wasted under some traffic
patterns.
Multi-tenant Isolation: In a pipeline, packets are forwarded
through offloads that do not need to process the packet. Even
if every offload runs at full line-rate, a high latency offload
used by Tenant A but not by Tenant B will unnecessarily
lead to increased latency for Tenant B. This can be avoided
with routing logic to bypass offloads, but this also requires
additional buffer memory at each offload to avoid pipeline
stalls or packet drops. It is only possible to bypass an offload
without stalling the pipeline if there is somewhere else to put
the packets that it is currently processing.

Multi-tenant isolation is more problematic if not all of-
floads are guaranteed to run at line-rate. In this case, if tenant
A has already consumed all of the packet buffers allocated
for an offload, then tenant B will experience HOL-blocking
and possibly packet loss. Although per-offload scheduling



… Offload
N

Offload 
1

P1

PN

… to CPU

(a) A pipeline-of-offloads architecture

Core 1,1
P1

PN

… to CPU

Core M,1

…

Core 1,N…

Core M,N…

… …

(b) A tiled manycore NIC architecture

RMT
Pipeline

P1

PN

…

P1

PN

… Egress RMT 
PipelineDMA

Queues

to CPU

(c) A NIC with RMT pipeline [42]
Figure 1: Illustrations of existing programmable NIC architectures.

logic could be used to overcome this limitation, this has area
overheads, and, as with per-offload packet buffers, this logic
may be unutilized in some workloads.
Offload Variety: Pipeline-of-offloads designs are typically
used for programmable NICs that only support hardware of-
floads. The limitations of pipeline designs are best avoided
with low-latency offloads that run at line-rate. Because embed-
ded CPU cores may not run at full line-rate and can incur high
processing latency, this makes them a poor fit for pipeline de-
signs. To overcome this limitation, the Azure SmartNIC [32]
onloads computation from the programmable NIC to a core
on the main CPU for certain tasks. This approach is costly,
especially in cloud environments where servers are leased to
customers on a per-core basis.

Some FPGA NICs implement all NIC functionality on an
FPGA, including the Ethernet MAC and PCIe engines [12,
75, 76, 31]. Such NICs do not have many inherent limitations
as a platform. With the right design, such NICs can meet all
of our requirements, but no such design currently exists.

2.2.2 Manycore Designs

Figure 1b illustrates a manycore programmable NIC de-
sign [24, 53, 72, 73]. These designs implement network
offloads by parallelizing flow processing across a large num-
ber of embedded processors that are arranged into a multi-
hop on-chip tiled topology. Some manycore NICs addition-
ally contain hardware engines for cryptography and compres-
sion [72, 58]. This supports chaining and a variety of different
offloads, but performance and isolation are poor.
Performance: Manycore NICs use an embedded CPU core
to orchestrate the processing of a packet across offloaded
functions [34]. This is because the on-chip network cannot
parse complex packet headers to determine the appropriate on-
NIC addresses for the packet’s destination. As a result of this
design choice, manycore NICs have throughput and latency
problems that prevent high-performance chaining. Further,
manycore NICs even struggle to drive 100 Gbps and faster
line-rates [32]. Because a single embedded processor is not
enough to saturate line-rate, manycore NICs require packet
load-balancing and buffering to scale performance.

Manycore NICs struggle to provide high-throughput chain-
ing because manycore interconnects typically only provide
enough throughput for a received packet to be sent to one
embedded core before being sent via DMA to main mem-
ory. As applications become complex, state and caching
limitations can require that different offloads be implemented

as microservices distributed across cores instead of parallel
monoliths. Current manycore NIC designs are not able to
provide high performance for such a usecase.

Similarly, involving a CPU in a manycore NIC adds sig-
nificant packet processing latency that otherwise could be
avoided for packets that only need to be processed by a hard-
ware accelerator. For example, Firestone et al. [32] report
that processing a packet in one of the cores on a manycore
NIC adds a latency of 10 µs or more.
Multi-Tenant Isolation: Because manycore NICs must
buffer packets and load-balance them across parallel embed-
ded cores [48], the extent to which tenants are isolated is deter-
mined by how buffer resources are managed, and how packets
are load balanced. Unfortunately, existing manycore NIC de-
signs do not provide explicit control over packet scheduling
and buffering [48]. They use FIFO packet queuing and drop-
tail buffer management; without any other isolation mecha-
nisms, this can lead to HOL blocking, and drop-tail packet
buffers can allow one tenant to unfairly consume buffers.

However, some level of isolation is possible in manycore
NICs by (1) statically partitioning CPU resources across dif-
ferent tenants [48], which is inefficient, and (2) then using
NIC-provided SDN mechanisms for steering tenants’ flows to
different cores. Additionally, some NICs such as the Broad-
com Stingray allow running an OS to provide software-based
isolation through a Linux operating system [22], but this can
exacerbate the NICs’ performance issues.

2.2.3 Reconfigurable Match+Action (P4) Designs

Figure 1c shows an RMT NIC design; these are built using an
ASIC substrate with a programmable match+action (RMT)
pipeline [42, 60]. In this model, incoming packets are first
parsed by a programmable parser and then sent through a
pipeline of M+A tables. Unfortunately, RMT NICs cannot
support many interesting offloads (e.g., compression, encryp-
tion, or any offload that must wait on the completion of a
DMA from main memory) because the actions that are possi-
ble at each stage of the pipeline are limited to relatively simple
atoms that can execute within 1-2 clock cycles [67, 60, 21].
However, RMT NICs do not suffer from multi-tenant per-
formance isolation problems because each offload runs at
line-rate with extremely low latency.

3 PANIC Overview
PANIC is a new programmable NIC design that meets the
aforementioned requirements (Section 2.1). The core idea be-



Packet Buffer

Compute 
Unit 1

Compute 
Unit 2

Compute 
Unit 3

Central 
SchedulerOn-chip 

Memory

DMA
Engine

DRAM Controller

port0

port1

port0 port1

Switching Fabric

RMT
MAC 
PHY

MAC 
PHY

DDR 4PCIe Gen4 x8

QSFP28 QSFP28

port0 port1

Figure 2: PANIC Architecture

hind the design of PANIC is that programmable NICs should
be implemented as four logical components (Figure 2): 1) A
programmable RMT pipeline, which provides programmable
offload chaining on a per-packet basis; 2) A switching fabric,
which interconnects all other components in PANIC and en-
ables dynamic chaining at line-rate; 3) A central scheduler,
which achieves high-performance packet scheduling, traffic
prioritization and traffic isolation; 4) Compute units, each of
them running a single offload. This system architecture is
shown in Figure 2. We show that this design is suitable for
both ASIC and FPGA implementations.
Operational overview: Figure 2 illustrates how PANIC op-
erates when packets are received. In this example, there are
three compute units 1, 2, and 3 running services A, B, and
C respectively. When packets are received in PANIC in Step
1, they are first processed by the RMT pipeline. The RMT
pipeline parses the packet headers and matches on them to
identify the chain of offloads that the packet should be for-
warded to, and then it generates a PANIC descriptor that
contains this offload chain information. In this example, the
offload chain that is found will first send the packet to service
B and then to service A.

Next, the packet is injected into the switching fabric. If the
packet does not need to be processed by any offloads, it will
be forwarded straight to the DMA engine of the NIC, which
is connected to the interconnect in the same manner as all of
the compute units used to implement offloads. Otherwise, it
is sent to the central packet scheduler (Step 2).

The scheduler then buffers the packet and orchestrates
scheduling and load-balancing the request across its offload
chain. When there is no load, packets are chained with a
source route that takes them from offload to offload with-
out stopping at the packet scheduler. In this example, the
scheduler first buffers this packet until Unit 2 is idle. Then,
in Step 3, it steers this packet to Unit 2, and, in Step 4, the
packet is directly pushed to Unit 1. Finally, in Step 5, after
Unit 1 finishes the computation of service A, the source route
steers this packet to the DMA engine, which is responsible

for transferring packets over the PCIe bus into main memory
on the host.

When load is high (not shown), the loaded unit (say Unit
1) detours a packet that was pushed to it (by Unit 2) off to
the buffer in the central scheduler. From there, the packet
can be pulled later for processing by either Unit 1 when it
has finished processing a packet or by another parallel unit
running the same logic as Unit 1 entirely.

Transmitting packets is similar to receiving packets in re-
verse, except that the main CPU can associate offload chains
with transmit queues beforehand so that the RMT pipeline
does not need to process packets before they can be sent to
offloads. After the main CPU enqueues packet descriptors,
they will be read by the DMA engine, forwarded through an
offload chain and managed by the central packet buffer as
needed, and then forwarded to the appropriate Ethernet MAC.

PANIC makes it possible to meet all of our requirements:
1. Offload Variety: Each offload in PANIC is an independent
tile attached to the high-performance interconnect, and the
RMT pipeline builds the packet headers necessary to enable
hardware offloads to process packet streams without any addi-
tional routing or packet handling logic. This allows for a large
variety of different types of computation to be performed by
the offload engine, including hardware IP cores, embedded
processors, and even embedded FPGAs [74].
2. Dynamic Offload Chaining: Installing a new chain in
the RMT pipeline for received packets involves programming
lookup tables, and installing a new chain for a transmit queue
can be done by issuing MMIO writes from the main CPU.
3. Policies for Dynamic Multi-Tenant Isolation: Perfor-
mance isolation is provided by the central packet scheduler,
which performs packet scheduling across the packets buffered
for groups of parallel offloads that provide the same service.
The scheduling algorithm determines both how chains com-
peting for a service are isolated and how chains share packet
buffers. Similar to prior work [68, 70], packet scheduling
policies in PANIC are programmable. Further, PANIC im-
proves upon prior work by also providing policy-aware packet
dropping to enable cross-tenant memory isolation.

PANIC supports any scheduling algorithm that can be im-
plemented by assigning an integer priority to a packet, and
this includes a wide range of different policies, including strict
priority, weighted fair queuing (WFQ), least slack time first
(LSTF), and leaky bucket rate limiting [56, 68]. Although
strict priorities lead to starvation, this is intended—if there
is enough mission-critical traffic to consume all available re-
sources, then it is acceptable for competing best-effort traffic
to starve. If starvation is undesirable, it can be avoided by
using WFQ and rate-limiting.

PANIC can support a hierarchical composition of different
scheduling algorithms, e.g., fair sharing across tenants with
prioritization of flows for each tenant, although this comes
with additional hardware costs. More complex scheduling
algorithms are also possible in PANIC because priorities for



PK_LEN BUF_ADDR SERVICE_CHAIN

0 16 32 36

CHAIN_LEN

variable

Figure 3: PANIC Descriptor

later services in a chain can be dynamically computed by
an earlier chain stage. Similarly, each group of offloads that
form a service can have its own custom scheduling algorithm,
which is useful when different chains start with different
offloads and then converge and share the same service.
4. Support for offloads with variable and below line-rate
performance: The central packet scheduler supports offloads
that have variable performance. Packets for slow offloads will
be buffered at the central scheduler. As loads shift, packet
buffers can be dynamically allocated to different offload
groups. PANIC’s hybrid push/pull load balancing scheme out-
lined in the example above load-balances packets across par-
allel offloads, ensuring precise load control, low tail latency,
and minimal and efficient on-chip network use. Similar to the
packet scheduler, the load balancer is also programmable.
5. High Performance: PANIC uses an on-chip network
inspired by network routers to provide a high-performance
interconnect between different offload tiles and the tiles for
DMA and the Ethernet MACs. PANIC uses non-blocking
high-bisection topologies like the crossbar making it possible
to guarantee line-rate performance even if every offload in a
chain sends/receives at line-rate over the on-chip network.

4 Design
This section discusses the design of the individual compo-
nents of PANIC in more detail.

4.1 RMT Pipeline
The RMT pipeline in PANIC is used to provide programmable
chaining and to look up scheduling metadata as part of pro-
viding programmable scheduling. The design of the RMT
pipelines is borrowed from the design used in programmable
switches [21, 67]. When a packet is received by the NIC,
the RMT pipeline first parses incoming packets and then
processes them with a sequence of match-action tables (MA
tables). Each MA table matches specified packet header fields
and then performs a sequence of actions to modify or forward
the packet. Via these actions, the RMT pipeline 1) performs
simple, line-rate packet processing (e.g., IP checksum calcula-
tion) and 2) generates a PANIC descriptor for each packet that
contains the appropriate chaining and scheduling metadata
given the configuration that was programmed by the opera-
tor/user. Additionally, the RMT pipeline can maintain state
on a per-traffic-class or per-flow basis if needed to support
programmable scheduling or flow affinity.

Figure 3 shows the PANIC descriptor added by the RMT
pipeline. It includes the packet length, the allocated buffer
address, and the service chain for this packet, which is a
list of services to send the packet to along with per-service
metadata from the RMT. Because multiple compute units

Central Scheduler

Logic
PIFO 
Array

On-Chip 
Memory

(Packet Buffer) 

…

Sw
itch

in
g Fab

ric

Credit
Manager

Packet Data 

Descriptor

RAM 
Writer

RAM 
Reader

Service 1
PIFO

Service N
PIFO

Figure 4: Architecture of the multi-ported central scheduler

may implement the same service (offload), this means that
the RMT pipeline does not specify the exact unit a packet will
be sent to in advance. This enables the scheduler to perform
dynamic load balancing across multiple computation units
implementing the same service in parallel.

In addition to specifying a list of services, the offload chain
also contains metadata. For example, per-hop scheduling
metadata like traffic class and priority allows a chain to have
different priorities and weights across different services. Sim-
ilarly, the descriptor may also contain service-specific meta-
data to allow the RMT pipeline to perform pre-processing to
speed-up or simplify different compute units. Examples of
this type of metadata include pointers to fields in a parsed
packet and a pre-computed hash of an IP address.

The RMT pipeline directly connects to the switching fabric.
To ensure low latency, the pipeline directly steers packets that
are not processed by any service to the DMA engine.

4.2 High Performance Interconnect
To enable dynamic service chaining, PANIC use an on-chip
interconnect network to switch packets, providing high-speed
communication between the scheduler and on-NIC units.

Because it is necessary to forward packets between of-
floads at line-rate, it is important to build a high-performance
network. PANIC utilizes a non-blocking, low latency, and
high throughput crossbar interconnect network, which, for the
scale of our design, still has a low area and power overhead.
The crossbar can be configured to connect any input node to
any output node with no intermediate stages, and each port
runs at line-rate. As a result, every offload can simultaneously
send and receive at line-rate, which enables line-rate dynamic
chaining regardless of which offloads a chain uses.

Although economical in small configurations, crossbar in-
terconnects unfortunately do not scale well with an increase
in the number of cores. Most of these problems arise from
the delay and area cost associated with long interior wires
because the number of these wires increases significantly
with the number of cores. Fortunately, with PANIC, we are
able to choose between different interconnect topologies with-
out having to change other parts of the design. If there is



a need to scale beyond the limits of a single crossbar, we
can switch to a more scalable (but higher-latency) flattened
butterfly topology [43].

4.3 Centralized Scheduler
The centralized scheduler buffers packets, schedules the order
in which competing packets are processed by a service, and
load-balances packets across the different compute units in a
service. The scheduler architecture is shown in Figure 4. The
scheduler uses a new hybrid scheduling algorithm to support
low-latency chaining while avoiding load imbalance, and it
uses a new hardware-based priority queue (i.e., PIFO [68])
to schedule and drop packets according to a programmable
inter-tenant isolation policy.

An overview of the operation of the central scheduler is as
follows: When a packet and its descriptor arrive, the scheduler
writes the packet data into high-speed on-chip memory and
stores the packet descriptor into the appropriate logical PIFO
queue given the next destination service of this packet. Each
logical PIFO queue corresponds to a service and sorts buffered
descriptors by rank, which enables the scheduler to drop
packets according to the same policy as they are scheduled by
dropping the lowest-rank packet currently enqueued for the
service if needed. Then, whenever any of the parallel compute
units for a service have available “credits” at the scheduler,
the credit manager (Figure 4) chooses the compute unit with
most credits, dequeues the head element of the corresponding
logical PIFO queue, and sends the packet data and descriptor
along with the packet data across the on-chip interconnect to
the chosen unit.

4.3.1 Hybrid Push/Pull Scheduling and Load Balancing

When one service cannot achieve line-rate with a single unit,
PANIC uses multiple parallel units to improve bandwidth. To
support load-balancing across variable performance offloads,
PANIC provides load-aware steering. Specifically, PANIC
introduces a new hybrid pull/push scheduler and load bal-
ancer that overcomes the limitations of either push or pull
scheduling to provide both precise request scheduling and
high utilization.

Pull-based scheduling provides the most precise control
over scheduling because decisions are delayed until each unit
is able to perform work. However, pull-based scheduling
can lead to utilization inefficiencies because each unit must
wait for a pull to complete before it can start work on a new
packet, and busy-polling can lead to increased interconnect
load. In contrast, push-based scheduling can lead to load-
imbalance and increased tail latencies when packets have
variable processing times. In this scenario, it is not possible
to know how much work is enqueued at each unit at the time
that load-balancing decisions must be made.

The hybrid scheduler used in PANIC provides the best
properties of both pull and push scheduling. In this scheduler,

during periods of high load, the central scheduler uses pull-
based load balancing to provide effective load balancing and
packet scheduling. During low load, the scheduler pushes
packets to all of the units in a service chain with low latency.
To accomplish this, the scheduler uses credits to monitor the
load at different units. Next, we describe the two modes of
operation, pull and push, and the use of credits.
Credit Management: The credit manager tracks credits to
measure load and dynamically switch between push-based
and pull-based scheduling. The credit manager initially stores
C credits for each compute unit. After sending a packet out,
it decreases the credit number for that unit by one. When a
compute unit is done processing a packet, it returns credit
back to the credit manager.

The central scheduler operates in push mode as long as
any of the parallel compute units in a service have credits
available. If flow affinity is not needed, the scheduler steers
packets to the unit which has the maximum number of pull
credits to avoid load imbalance.

In contrast, if no unit has credit when a packet arrives, the
scheduler buffers packets until credit is available. In this case,
the central scheduler provides pull scheduling. Because the
decision on which replica to use is made lazily, the number
of packets queued at each unit will never exceed C.

By default, the number of initial credits C is set to two
to avoid a stop-and-wait problem. However, it is possible to
configure different credit numbers for each unit if needed. For
example, ClickNP [47] uses a SHA1 engine that can process
64 packets in parallel, and PANIC can support this level of
parallelism by giving 64 or more credits to the SHA1 engine.
Push-based Chaining: Push scheduling provides low-
latency offload chaining. When a packet needs to traverse
multiple offloads (e.g., from A to B to C), the packet will be
directly pushed to B when it finishes the computation in A
rather than going back to the central scheduler. If B accepts
the pushed packets, it will send a cancel message to the cen-
tral scheduler to decrease its credit by one. In the case that
there are multiple parallel units providing a service, the push
destination is precalculated in the central scheduler. By push-
ing the packet directly to the next destination unit, PANIC
reduces interconnect traversal latency and reduces on-chip
network bandwidth demands. Furthermore, this reduces the
load on the central scheduler as chain lengths grow.
Detour Routing: Push mode chaining may cause a packet to
be pushed to a busy downstream unit that has no buffer space
to accept packets. In this case, we use detour routing: when
local buffer is occupied, the downstream unit redirects the
packet back to the central scheduler, where it is buffered until
it can be scheduled to another idle unit.

4.3.2 Packet Scheduling

To achieve priority scheduling and performance isolation,
every packet stored in the packet buffer has its descriptor en-
queued in a PIFO [68]. PANIC uses this PIFO-based priority



Hardware 
Accelerator

Cache

Credit
Manager

Scratchpad
Packet Buffer 

Traffic
Manager

Sw
itch

in
g Fab

ric

Offload Engine

Figure 5: Accelerator-Based
Compute Unit Design

Doorbell
Register

Array

Credit
Manager

Per-Core 
MemoryTraffic

Manager

Sw
itch

in
g Fab

ric

RISC-V 
CoreL1

B
u

s

Offload Engine

Figure 6: Core-Based Compute
Unit Design

scheduler to provide both performance and buffer isolation
across tenants.
Isolation Policy and Rank Computation: When a packet
arrives, the central scheduler uses stateful atoms (ALUs) [67]
to take metadata about the packet, look it up in the RMT
pipeline, and compute an integer priority that is used to en-
queue a descriptor for the packet into a PIFO block. This
enables PANIC to provide multi-tenant isolation, ensuring
traffic from high-priority tenants has low latency. Addition-
ally, if multiple PIFO blocks are used inside the scheduler, it
is possible to support hierarchical policies. Because the on-
chip network ports are bidirectional, there is enough network
throughput to forward incoming packets back out regardless
of which logical queue the packets use.
Prioritized Dropping: PANIC’s PIFO scheduler performs
prioritized packet dropping. Specifically, PANIC ensures
that when the NIC is overloaded, the lowest priority packets
will be dropped. To achieve prioritized dropping, PANIC
reuses the priority-sorted descriptor queue already used for
scheduling in the PIFO. When the free space in the packet
buffer for a logical PIFO is smaller than a threshold, the
scheduler will remove the least-priority descriptor from the
logical PIFO and drop this packet.

4.3.3 Performance Provisioning:

It is important to ensure that the central scheduler does not
become a performance bottleneck and can forward packets
across chains at full line-rate. To ensure that the scheduler
has sufficient throughput, PANIC uses multiple ports to attach
the scheduler to the on-chip network. Because the switching
fabric is designed to forward between arbitrary ports at line-
rate, increasing the number of ports used by the scheduler is
sufficient to scale the network performance of the scheduler.

The speed of the PIFO block used to schedule packets can
also become a performance bottleneck. The PIFO block that
we use can schedule one packet per cycle, e.g., 1000Mpps
when operating at a 1GHz frequency when implemented in an
ASIC design. Although this is sufficient to schedule packets
in both transmit and receive directions in our current design,
in the case that this number is greater than the performance
of a single PIFO block, multiple parallel PIFO blocks need to
be used to scale up performance.
Provisioning for Compute Unit Performance: The design

of the on-chip network and the scheduler can also ensure
that offloads may be fully utilized despite complications from
chaining. Specifically, when an offload O1 in a chain (Chain
A=O1–O2–O3) runs at a slower rate than the rest of the
offloads (O2–O3), it will become a bottleneck and cause O2–
O3 to be not fully utilized. However, this does not lead to
resource stranding. A second chain B that does not use O1 can
still use O2–O3 and benefit from the remaining capacity of
these offloads. The scheduler can ensure that the contending
chains fairly share capacity.

4.4 Compute Unit
To support offload variety, PANIC utilizes compute units to
attach offloads to the switching fabric. These compute units
are self-contained, meaning that hardware offloads can be
designed without needing to understand the packet switch-
ing fabric and without having to issue pull requests to the
hybrid scheduler. The interfacing with the switching fabric is
handled by the traffic manager (Figures 5 and 6). This both
reduces offload complexity by avoiding duplicating packet
processing functionality and reduces packet processing la-
tency by avoiding incurring the overheads of processing a
packet with a CPU.

An offload engine in PANIC can either be a hardware accel-
erator or a core, and Figure 5 and Figure 6 presents the design
of an ASIC accelerator-based and CPU-based compute unit
in PANIC, respectively. In both of these designs, the offload
functionality is encapsulated as an offload engine. Both per-
form packet processing by reading a packet once it arrives
from the network and has been placed in a local scratchpad
buffer. The traffic manager is responsible for communicating
with the switching fabric. This component includes logic for
sending and receiving packets as well as logic for updating
PANIC descriptors as needed for push-based chaining. The
compute unit’s local credit manager interfaces with the cen-
tral scheduler and is responsible for returning credits (when
a packet’s processing is done) and sending cancel messages
that decrement credits (when accepting a pushed packet).

The primary difference between an accelerator-based de-
sign and CPU-based design is that there is additional logic in
the CPU-based design that is used to interface with the mem-
ory subsystem of the embedded CPU core. As Figure 6 shows,
the compute unit utilizes memory-mapped I/O (MMIO) to
connect an embedded CPU core as follows: 1) The traffic
manager (TM) writes network data directly to a pinned re-
gion of the per-core memory. 2) Then the TM writes to an
input doorbell register to notify the core that data is ready.
3) After the core finishes processing, it writes data back to
the pinned memory region if needed and then writes to an
output doorbell register that is used to notify the TM of a new
outgoing packet. To make sure the packet data is written back
to memory, the core needs to flush the cache lines for the
pinned memory region. 4) The TM collects the output data
and sends it back to the switching fabric.



5 ASIC Analysis

We expect an eventual implementation of PANIC to use an
application-specific integrated circuit (ASIC), although we
have also prototyped PANIC in the context of an FPGA plat-
form for expediency. This is because relative to an FPGA, an
ASIC provides higher performance, consumes less power and
area, and is cheaper when produced in large volumes [44].
While an ASIC implementation is beyond the scope of this
work, in this section we briefly discuss the feasibility of im-
plementing different components of PANIC in an ASIC.
RMT: The implementation of an RMT pipeline in ASIC
has already been proven feasible [21]. The Barefoot Tofino
chip [16] is a concrete realization of the RMT architecture.
PIFO: PANIC uses a hardware priority queue to provide pro-
grammable scheduling. Our current design was borrowed
from the ASIC-based flow scheduler design of the PIFO pa-
per [68]. While this design is conceptually simple and easy
to implement because it maintains a priority queue as a sorted
array, it is less scalable relative to other priority queue de-
signs, e.g., PIEO [64], which uses two levels of memory or
pHeap [20], which uses a pipelined heap. For better scala-
bility, we can replace our current design with such scalable
hardware designs of priority queues at the expense of greater
design and verification effort.
Interconnect: One of the biggest potential scalability limi-
tations of a PANIC implementation is the on-chip switching
fabric. While crossbar interconnects are conceptually sim-
ple, the sheer number of wires in a crossbar might become
a physical design and routing bottleneck, causing both an
increase in area as well as an inability to meet timing beyond
a certain scale. Fortunately, prior work has already demon-
strated that it is feasible to build crossbars on an ASIC that
are larger than are needed in PANIC. Specifically, Chole et
al. built a 32 * 32 crossbar with a bit width of 640 bits [28,
Appendix C] at a 1 GHz clock rate. As another data point,
the Swizzle-Switch supports a 64 * 64 crossbar with a bit
width of 128 bits using specialized circuit design techniques
at 559 MHz in a relatively old 45 nm technology node [63].
For comparison, to provide 32 compute units each a 128 Gbps
connection to the switching interconnect, PANIC only needs
a 32 * 32 crossbar with a bit width of 128 bits and 256 bits at
1 GHz and 500 MHz clock frequencies, respectively.

At the same time, we anticipate a crossbar becoming no
longer viable at some point as the number of offloads contin-
ues to increase. At this point, we anticipate switching to other
more scalable topologies such as a flattened butterfly at the
cost of increased latency and reduced bisection bandwidth.
Compute Units: The PANIC offload engine can be a hard-
ware accelerator or a CPU core. There are several ASIC-based
RISC-V implementations which can used as a CPU core for
the offload engine [25, 26, 8]. Several functions important
to networking, such as compression, encryption, and check-
sums are available as hardware accelerators, which can be

reused for PANIC. Our own AES and SHA implementations
(Section 6) are based on open-source hardware accelerator
blocks [1, 7].

6 FPGA Prototype
We implement an FPGA prototype of PANIC in ∼6K lines
of Verilog code, including a single-stage RMT pipeline, the
central scheduler, the crossbar, the packet buffer, and compute
units. Also, we built a NIC driver, DMA Engine, Ethernet
MAC, and physical layer (PHY) using Corundum [33]. Al-
though the PANIC architecture supports both the sending path
and receiving path, in our current implementation, we mainly
focus on the receive path.
RMT pipeline: We implemented a single-stage RMT
pipeline in our FPGA prototype. We configure the RMT
pipeline in our prototype by programming the FPGA. The
RMT pipeline maintains a flow table, in which each flow is
assigned an offload chain and scheduling metadata. In the
match stage, the RMT module matches the flow table with
the IP address fields and port fields in the packet header. In
the action stage, the RMT module calculates scheduling meta-
data and generates the PANIC descriptor (Figure 3). The
frequency of the RMT pipeline is 250 MHz.
FPGA-based Crossbar: We have implemented an 8 * 8 fully
connected crossbar in our FPGA prototype. The frequency
for this crossbar is 250 MHz, and the data width is 512 bits.
This leads to a per-port throughput of 128 Gbps.
Central Scheduler and Packet Buffer: The architecture of
the scheduler is shown in Figure 4. The scheduler is con-
nected with two crossbar ports to ensure a sufficiently high
throughput connection to the on-chip network. In our im-
plementation, the PIFO block runs at 125 MHz frequency
with a queue size of 256 packets; all other components in
the scheduler run at 250 MHz, with a 512 bit data width,
and we add a cross-domain clocking module between other
components and the PIFO. We use lower frequency for the
PIFO because it suffers from a scalability issue when imple-
mented on the FPGA (we explain this further in Section 7.5).
The packet buffer is implemented with dual-channel high-
speed BRAM, where each BRAM channel supports concur-
rent reads and writes. The packet buffer size in our implemen-
tation is 256 KB with a 512 bit data width and a 250 MHz
frequency. For ease of implementation, our current prototype
uses a separate physical PIFO for each logical PIFO at the
cost of increasing the relative resource consumption of PIFOs.
Compute Units: As Figure 5 shows, our implementation of
a compute unit includes a traffic manager, a credit manager,
and a scratchpad packet buffer. We choose the AXI4-Stream
interface [2] as the common interface between the offload
engine and scratchpad buffer. We have included two types
of accelerator-based offload engines in our FPGA prototype.
One is the AES-256-CTR encryption engine [1], and the other
is the SHA-3-512 hash engine [7].



We have also implemented a RISC-V core engine based on
the open-source CPU core generator [9]. Figure 6 shows how
the RISC-V core is connected to PANIC’s traffic manager,
credit manager, and per-core memory. The RV32I RISC-V
core we use has a five-stage pipeline with a single level of
cache. The data cache and instruction cache are 2 KB each,
and the local memory size is 32 KB. The frequency for this
CPU is 250 MHz, and the per-core memory data width is
512 bits.

7 Evaluation
This section evaluates our FPGA prototype to show that it
meets the design requirements put forth in Section 2.1. In
Section 7.2, we use microbenchmarks to show that PANIC
achieves high throughput and low latency under different
offload chaining models. In Section 7.3, we compare PANIC’s
performance with a pipeline-of-offloads NIC. Section 7.4
measures the I/O performance of a RISC-V core in PANIC,
and Section 7.5 measures the hardware resource usage of
our FPGA prototype. Finally, in Section 7.6, we implement
different offload engines, and test PANIC end-to-end; these
results demonstrate that PANIC can isolate and prioritize
traffic efficiently under multi-tenant settings.

7.1 Testbed and methodology
For our microbenchmarks, we implemented our FPGA proto-
type in the ADM-PCIE-9V3 network accelerator [12], which
contains a Xilinx Virtex UltraScale Plus VU3P-2 FPGA. For
this evaluation, we also implemented a delay unit, a packet
generator, and a packet capture agent on the FPGA. The delay
unit emulates various compute units by delaying packets in
a programmable fashion, which allows us to flexibly control
per-packet service time and chaining models. This enables us
to run microbenchmarks that systematically study PANIC’s
performance limits. The packet generator generates traffic
of various packet sizes at different rates. The packet capture
agent receives packets and calculates different flows’ through-
put and latency. We calculate packet processing latency by
embedding a send timestamp in every generated packet.

For our end-to-end experiments, we evaluate PANIC in a
small testbed of 2 Dell PowerEdge R640 servers. One server
is equipped with a Mellanox Connectx-5 NIC, and the other
server is equipped with the ADM-PCIE-9V3 network accel-
erator carrying our PANIC prototype. The Mellanox NIC and
ADM-PCIE-9V3 card are directly connected. We program the
VU3P-2 FPGA on the network accelerator using our Verilog
implementation of PANIC. We use DPDK to send customized
network packets and use PANIC to receive packets and run
offloads. Because of a performance bottleneck in the kernel-
based FPGA NIC driver [33], we use the packet capture agent
on the FPGA to report PANIC’s receive throughput instead
of capturing packets on the host machine.

7.2 PANIC System Microbenchmarks
We microbenchmark PANIC’s performance using the differ-
ent chaining models shown in Figure 7. Our results demon-
strate that PANIC can both achieve high throughput and low
latency for various common offload chaining models.
Model 1 (“Pipelined Chain”): In model 1 (Figure 7a),
we attach N delay units in sequence. Each unit emulates a
different service, and all of them process packets at X Gbps
with fixed delay. We then configure a service chain that sends
packets through all N units in numerical order.

First, we measure the throughput and latency overhead
of PANIC when N = 3 and X = 100. Figure 8a shows the
overall throughput under different packet sizes. With MTU-
sized packets, PANIC can schedule packets at full line-rate.
When the initial number of credits in PANIC is small, we
see a nonlinear performance downgrade with small packets.
This is because throughput for small packets is bounded by
the scheduling round trip time in PANIC, which is 14 clock
cycles. If we increase the initial credit number for each unit,
we see a performance increase for small packets. When the
credit number is greater than 8, the small packet performance
is no longer bounded by the scheduling round trip, instead,
it is bounded by the small packet performance of our delay
unit. These results also demonstrate the benefits of PANIC’s
flexibility in per-unit credit allocation. Setting different credit
numbers for each unit can improve performance.

Next, Figure 8b shows the latency of different packet sizes
in the same experiment. In this pipelined chain, packets can
be scheduled through three units within 0.5 microseconds.
This low latency performance also arises from PANIC’s push
scheduling which helps PANIC avoid extra packet traversals
between units and the scheduler.

Next, Figure 9 shows PANIC’s throughput as a function of
the chain length when push scheduling is disabled. Without
push scheduling, the packet needs to go back to the scheduler
at every hop, and the total traffic that goes into the sched-
uler is the ingress traffic from the RMT pipeline plus the de-
toured traffic from units, which is: Ttotal = TRMT +Tdetour =
TRMT +(N −1)∗X = N ∗X . As Figure 9 shows, when Ttotal
exceeds the dual-ported scheduler’s maximum bandwidth
(250 MHz * 512 bits * 2 ports = 256 Gbps), the chaining
throughput downgrades. For example, when N = 3, X = 70,
Ttotal = 210 Gbps < 256 Gbps, thus PANIC can schedule this
chain at full speed even when push scheduling is disabled.
When N = 3, X = 90, Ttotal = 270 Gbps > 256 Gbps, the
chaining throughput downgrades since the scheduler band-
width becomes the bottleneck.
Model 2 (“Parallelized Chain”): In model 2 (Figure 7b), we
attach three delay units running in parallel. These three units
run the same service, and each unit has an average 34 Gbps
throughput but variable latency. PANIC load-balances pack-
ets across these units. Figure 8c shows the throughput under
different packet sizes and service time variance (the service
time follows uniform distribution). We see that even when



𝑂1 …

X GbpsX Gbps

Input Output𝑂𝑁𝑂1

(a) Chaining Model 1

34Gbps * 3

Input OutputA (𝐴1, 𝐴2, 𝐴3)

(b) Chaining Model 2

50Gbps * 252Gbps * 2

Input OutputA (𝐴1, 𝐴2) B (𝐵1, 𝐵2)

(c) Chaining Model 3

A

60GbpsInput Flow 1
prio = high

(30%)

Input Flow 2
prio = low

(70%)

B

80Gbps

Output

(d) Chaining Model 4
Figure 7: The different chaining models used in experiments.

0

20

40

60

80

100

64 128 256 512 1024 1500

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Packet Size (B)

1 credit
2 credits
4 credits
6 credits
8 credits

(a) Model 1 throughput

0

0.15

0.3

0.45

0.6

64 128 256 512 1024 1500

La
te

n
cy

 (
μ

s)

Packet Size (B)

(b) Model 1 latency

0

20

40

60

80

100

64 128 256 512 1024 1500

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Packet Size (B)

 Variance: ± 20%

 Variance: ± 40%

(c) Model 2 throughput

0

0.2

0.4

0.6

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

e
d

u
le

 L
at

e
n

cy
 (

u
s)

Load 

(d) Model 2 latency

0

0.05

0.1

0.15

0.2

50

60

70

80

90

100

256 512 1024 1500

D
et

o
u

r 
R

at
e

 

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Packet Size (B)

Detour Rate ( Var ± 40%) Detour Rate ( Var ± 60%)

Throughput ( Var ± 40%) Throughput ( Var ± 60%)

(e) Model 3 detour rate and
throughput.

0

4

8

12

16

0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

n
cy

 (
μ

s)

Load

Pipeline F1

Pipeline F2

PANIC F1

PANIC F2

(f) Different flow’s latency in
the pipeline design and

PANIC
Figure 8: PANIC performance under different chaining

models
the processing latency variance increases from 20% to 40%,
PANIC can still efficiently load-balance packets between the
parallel units without impacting throughput. In this experi-
ment, small packet performance is better than model 1 be-
cause model 2 has multiple units running in parallel. Overall
throughput is no longer bounded by the delay of a single unit.

Figure 8d shows PANIC scheduling latency under different
loads with MTU sized packets and 40% service time variance.
The error bars in this figure represent 5%-ile and 99%-ile
latency. Scheduling latency reveals how long the incoming
packets wait before being processed by an idle unit; we calcu-
late it by subtracting the unit processing time from the total
latency. When the NIC load is much smaller than 1, schedul-
ing tail latency grows slowly, and is under 0.4 µs. When
the load approaches 1, queueing occurs in the packet buffer,
which causes tail latency to grow, but it still stays < 0.8 µs.
This shows that our credit-based scheme keeps latency low
even at high load, and most latency is due to queueing.
Model 3 (“Hybrid Chain”): Model 3 (Figure 7c) is a hybrid
chaining model where packets are not only load-balanced
between parallel units but also go through multiple services.

0

20

40

60

80

100

1 2 3 4

Th
ro

u
gh

p
u

t 
(G

b
p

s)

N: Chain Length

X =70 X = 80 X = 90 X = 100

Figure 9: Model 1
throughput when push is

disabled.

0.125

0.25

0.5

1

2

4

8

16

No_Touch Memcpy NAT Swap_OvS

P
e

r 
P

ac
ke

t 
La

te
n

cy
 (

u
s)

Network IO Flush Cache Computation

61.4 Gbps

1.2 Gbps

21.3 Gbps 20.2 Gbps

Figure 10: Performance of a
single RISC-V core with

MTU-sized packets.

Throughput Total

Flow 1 (Pipeline Design) 18.7 Gbps 60.6 GbpsFlow 2 (Pipeline Design) 41.9 Gbps
Flow 1 (PANIC) 30.7 Gbps 59.8 GbpsFlow 2 (PANIC) 29.1 Gbps

Table 3: Throughput of the pipeline design and PANIC.

Packets need to be processed first by service A and then
by service B, and both services have multiple parallel com-
pute units. Each compute unit for service A has an average
throughput of 52 Gbps, while each compute unit for service
B has an average throughput of 50 Gbps. Compute units for
both service A and B have variable latency.

Figure 8e shows the throughput and detour rate in this
hybrid model. When the packet size is bigger than 256 bytes,
the detour rate is high. This is because the downstream B
units have lower throughput than the upstream A units. As
a result, the B units are always busy because they are the
throughput bottleneck in this system. Busy units are likely
to have no space to accept pushed packets: if A unit tries to
push packets to a busy downstream B unit, then the B units
will more often than not detour the pushed packets back to
the central scheduler.

Figure 8e also shows that detour routing does not degrade
throughput. This is because the maximum bandwidth of
our dual-ported scheduler is 256 Gbps, and in this hybrid
model, the ingress traffic from the RMT pipeline will take up
100 Gbps bandwidth in the scheduler, thus there is more than
100 Gbps bandwidth left for the detoured traffic.

However, detour routing can increase packet latency. In
order to mitigate this, the central scheduler increases the pri-
ority for each detoured packet, to help them get rescheduled
first. Thus, the latency incurred by detoured packets is the
RTT between the compute unit and the scheduler, which is
< 0.5 µs.



7.3 Comparison with the Pipeline Design
To demonstrate that PANIC handles multi-tenant isolation
and below line-rate offloads better than state-of-the-art, we
build and compared against the pipeline-of-offloads NIC as
our baseline. We choose model 4 (Figure 7c) as the offload
chain for this comparison. The difference between model 4
and model 1 is that the delay unit emulates a below-line-rate
offload in model 4. We assume two flows are competing:
Flow 1 has a higher priority, and takes up 30% of the total
traffic. Flow 2 has a lower priority, and takes up 70% of the
total traffic.

We implemented a pipeline-of-offloads NIC in the ADM-
PCIE-9V3 network accelerator. In this NIC, all incoming
packets are first buffered in a FIFO (First-In-First-Out) queue
before entering unit A. Unit A and unit B are directly con-
nected using the AXI4-stream interface [2]. We configured
the pipeline-of-offloads NIC and PANIC to have the same
buffer size (64 KB), same frequency (250 MHz), and same
bit-width (512 bits).

Figure 8f presents a comparison of the latency of both
the pipeline design and PANIC in this experiment. When
the NIC load is low, Unit A is not the bottleneck, and both
NICs have low latency. The pipeline design has slightly
better latency since units are directly connected in it, while
scheduling packets in PANIC has some overhead. When load
increases, Unit A becomes the bottleneck, and both NICs
start to buffer and drop packets. With high load, Flows 1
and 2 have the same latency in the pipeline design, since
packets are scheduled in First-Come-First-Served order and
can experience HOL blocking. In PANIC, the high priority
packets have fixed low latency due to the central scheduler
sorting buffered packet descriptors and serving high priority
packets first.

We compare the throughput between the pipeline design
and PANIC in Table 3. The total throughput is bounded by
Unit A (60 Gbps). In the pipeline design, the low priority
flow 2 has a higher throughput than flow 1, because the high-
volume flow 2 steals on-chip bandwidth by taking up most of
the on-chip buffer. PANIC preferably allocates buffer to high
priority packets and always drops the lowest priority ones.
Thus flow 1 can always achieve full throughput in PANIC.

Overall, PANIC achieves good isolation: 1) PANIC
achieves comparable throughput and latency with the pipeline
design when there is no HOL blocking. 2) When HOL block-
ing occurs, PANIC ensures that the high priority flows have a
fixed low latency. 3) PANIC allocates bandwidth according
to a flow’s priority.

7.4 RISC-V Core Performance
To investigate the I/O overhead of using an embedded NIC
core to send/receive network packets from PANIC, we per-
formed experiments with a single RISC-V CPU core as the
only offload engine in a chain. We measure the system

throughput and per-packet latency using four example C pro-
grams:
No-Touch: After receiving the packet from PANIC, this pro-
gram will send the packet back to PANIC immediately. This
program does not make any changes to the packet data.
Memcpy: This program will copy the received packet to
another memory address and then send the copied packet
back to PANIC.
NAT: The Network Address Translation (NAT) program
uses the embedded CPU core to lookup a <Translated IP,
Port>pair for a given 5-tuple, and then replace the IP address
and port header fields using the lookup results. The lookup
table is stored in the local memory inside the offload engine.
The RMT pipeline will pre-calculate the hash value for each
packet, and the hash value is stored as per-service metadata
in the PANIC descriptor. Thus the CPU core can directly read
the pre-calculated hash value from the descriptor.
Swap OvS: This program swaps the Ethernet and IP source
and destination addresses.

Figure 10 shows the RISC-V core throughput and per-
packet latency with MTU sized packets. We breakdown the
latency number into three different parts: 1) Network I/O: the
time that is spent on pulling/writing the input/output doorbell
register, 2) Flush Cache: the time spent on flushing the L1
cache, 3) Computation: the time spent on computation, in-
cluding the data exchange time between the L1 cache and the
per-core memory. The results of this experiment show that
the overhead of the NIC to CPU core interface is low, and, for
those low-throughput applications, the I/O time introduced
by PANIC is negligible.

For example, the throughput of the No-Touch program
is 61.4 Gbps, and all the time is spent in network I/O. The
throughput of the NAT and Swap OvS programs is 21.3 Gbps
and 20.2 Gbps, respectively. ∼20% of the time is spent
in flushing the cache, ∼27% in network I/O, and ∼50% in
computation. Cache flushing is costly in our current prototype:
to synchronize the data between the cache and memory, the
whole L1 cache is flushed before processing the next packet.
If needed, this performance could be improved by modifying
the CPU to support an instruction that only flushes the cache
lines for the pinned memory region used by the packet.

The throughput of Memcpy is only 1.2 Gbps, and 97% of
the time is spent in computation. This is due to the limitations
of the performance of the FPGA based RISC-V core. With
a faster core and a higher clock frequency, this performance
can be improved.

7.5 Hardware Resource Usage
Our UltraScale VU3P-2 FPGA has 3 MB BRAM, and 394k
LUTs in total. Table 4 shows different components’ resource
usage under different settings. In our end-to-end experiments
(Section 7.6), the crossbar has 8 ports, total queue size in the
PIFO array is 256 packets, and packet buffer size is 256 KB.
Under this setting, we find that PANIC’s design will only



Module Setting LUTs(%) BRAM(%)

Crossbar 8 ports 5.5 0.00
16 ports 13.64 0.00

Scheduler (PIFO) PIFO = 256 5.18 (4.9) 0.07 (0.01)
PIFO = 512 9.95 (9.42) 0.07 (0.01)

Packet Buffer 256 KB 0.16 8.94
Simple RMT / 0.27 0.00

Table 4: FPGA resource usage for different components.

cost 11.27% logic area (LUTs) in our middle-end FPGA.
Total BRAM usage is 8.94% due to the limited BRAM in our
FPGA.

The crossbar and PIFO occupy most of the on-chip logic
resources in PANIC. When the crossbar uses 8 ports, it costs
around 5.5% logic area, and for 16 ports, the logic area cost
is 13.64%. When the total PIFO size is 256, it will cost 4.9%
logic area, and when the size is 512, it will cost 9.42%. PIFO
suffers from high logic area cost because its hardware design
does not access BRAM at all; it only uses the logic unit to
compare and shift elements. This design causes PIFO to be
less scalable in the FPGA since it cannot benefit from the
FPGA’s memory hierarchy to efficiently distribute storage
and processing across SRAM and LUTs. Recent advance-
ments [64] can be used to address this (Section 5). Overall,
we find that PANIC can easily fit on any middle-end FPGA
without utilization or timing issues.

7.6 End-to-End Performance
In this section, we measure PANIC’s end-to-end performance
in our cluster. Because of the performance bottleneck of the
kernel-based FPGA NIC driver, we use hardware counters
to measure PANIC’s receiving throughput. We implement
two FPGA-based offload engines in PANIC: a SHA-3-512
engine and an AES-256 engine. Our end-to-end experiment
demonstrates that: 1) PANIC can schedule network traffic at
full line-rate, 2) PANIC can precisely prioritize traffic when
different flows are competing for computation resources at
the offloads, and 3) PANIC can support different isolation
policies, including strict priority and weighted fair queueing.

The AES-256-CTR encryption engine [29] encrypts input
plain text into ciphered text or decrypts ciphered text to yield
plain text. The fully pipelined AES-256 engine can accept
128-bit input per cycle, and it can run at 250 MHz frequency
with 32 Gbps throughput. The SHA-3-512 engine [19] per-
forms SHA-3, a newest cryptographic hash which uses permu-
tation as a building block [18]. The FPGA-based SHA-3-512
engine that we use runs at 150 MHz with 6 Gbps throughput.

Since the throughput of a single SHA engine is low, we
put 4 SHA engines into a single hash unit, and set the initial
credit number for the hash unit to 4. Thus, the hash unit can
use 4 SHA engines to process these packets in parallel. We
connect two decryption units and two hash units with PANIC.
Thus, the bandwidth of hash computation is (6 * 4) * 2 = 24 *
2 = 48 Gbps, and that for decryption is 32 * 2 = 64 Gbps.

In our experiment, we assume there are two types of traffic

Traffic IPSec Video Background

Drop Rate 0% 33.1% 0%

Table 5: Packet dropping rate in phase 1 in Figure 11a.

competing for the computation resource in PANIC. One is
high-volume multimedia traffic, which uses AES offload to
decrypt video streams. Another is low-volume IPSec traffic,
which first uses SHA to ensure the integrity of the data and
then uses AES to decrypt IP payload. The IPSec traffic has
higher priority than video stream traffic, and each of these traf-
fic streams contains multiple flows. Also, we add background
traffic that does not need to be processed by any compute unit.
The offload chains are shown in Figure 12.

In the first experiment, we use the strict priority policy,
which means all the IPSec packets have higher priority than
the video packets. Figure 11a shows different traffic’s receiv-
ing throughput under different traffic patterns. In phase 1,
the sending throughput is 30 Gbps for IPSec and is 50 Gbps
for video. We can see the receiving throughput for IPSec is
30 Gbps, which is the same as the sending throughput. The
receiving throughput for the video stream is only 34 Gbps.
This is because IPSec and video stream share the AES offload.
However, the available peak bandwidth for the AES offload
is only 64 Gbps. Thus, PANIC will first satisfy the high pri-
ority IPSec traffic requirement, which only leaves 34 Gbps
(64 - 30) of bandwidth for the video stream. Table 5 shows
the dropping rate under phase 1. Due to prioritized packet
dropping, PANIC only drops low priority video packets. Over-
all, when a below-line-rate offload becomes the bottleneck,
PANIC always first satisfies high priority traffic’s bandwidth
demands.

In phase 2, the DPDK sender switches to the next traf-
fic pattern, in which the IPSec traffic sending rate drops to
10 Gbps, and video traffic sending rate grows to 50 Gbps.
Since the IPSec sending rate drops, the video stream can get
more bandwidth, but it will still lose some bandwidth and
experience packet drops because of the AES bottleneck. In
phase 3, the DPDK sender switches to the last pattern, in
which the AES offload is no longer the bottleneck; no packet
drops occur, and the total throughput can reach 100 Gbps.
Another noteworthy aspect in Figure 11a is that no matter
what computation happens, background traffic performance
is unaffected.

In the second experiment, we use a weighted fair queueing
(WFQ) scheduling policy where the AES offload’s capacity
is divided across IPSec traffic and video traffic in 2 : 1 ra-
tio. Figure 11b shows the throughput of the different traffic
types under the WFQ policy for different traffic patterns. In
phase 1, the sending throughput for IPSec is 70 Gbps, and
for the video stream is 30 Gbps. We can see the receiving
throughput for IPSec is exactly twice of the video stream, and
the total throughput is 64 Gbps. If the IPSec sending rate
drops to 50 Gbps (phase2), the receiving throughput remains
unchanged. This result proves PANIC can shape the traffic



0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

IPSEC VIDEO BG TOTAL
Tr

af
fi

c 
P

at
te

rn

50Gbps
IPSec
Video
BG

30Gbps

20Gbps

10Gbps
60Gbps
30Gbps

30Gbps
30Gbps
40Gbps

Phase 1 Phase 2 Phase 3

(a) Strict Priority Policy

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Th
ro

u
gh

p
u

t 
(G

b
p

s)

Time (s)

IPSEC VIDEO BG TOTAL

30Gbps
IPSec
Video
BG

70Gbps

0Gbps

50Gbps
50Gbps
0Gbps

30Gbps
30Gbps
40GbpsTr

af
fi

c 
P

at
te

rn

Phase 1 Phase 2 Phase 3

(b) Weighted Fair Queueing Policy
Figure 11: Receiving throughput with different traffic patterns. Figure a uses strict priority policy: all the IPSec packets have
higher priority than the video packets. Figure b uses WFQ policy: the offload capacity is divided across IPSec traffic and video

traffic in the ratio 2:1. The table in Figure a and Figure b shows how the sending traffic pattern changes with time.

IPSec traffic
SHA 

(S1,S2)

Video 
traffic

AES 
(A1,A2)

32Gbps * 2

24Gbps * 2

Background 
traffic

Prio = Low

Prio = High

DMA
Engine

Figure 12: Offload chains; end-to-end experiment

precisely, regardless of the sending rate.
In phases 1 and 2, the scheduler switches to pull-based

scheduling since the AES offload is always congested. As
a result, the egress packet of the SHA offload goes directly
back to the scheduler instead of the congested AES offload.
The scheduler then shapes the video traffic and the detoured
IPSec traffic into a desired rate using WFQ.

In phase 3, the AES offload is no longer the bottleneck.
Thus, the central scheduler operates in push mode: the egress
packet of the SHA offload can bypass the scheduler and be
directly pushed to the AES offload. As shown in Figure 11b,
both IPSec and video’s receiving throughput can reach the
sending rate, which is 30 Gbps. Overall, this shows that
PANIC can shape the traffic precisely with the WFQ policy.

8 Related Work
Several projects introduce new offloads that utilize pro-
grammable NICs and new frameworks for deploying these
offloads [13, 48, 59, 42, 32, 37, 49, 65, 46, 62, 47, 40, 30, 36,
70, 69, 35, 55, 45]. PANIC is orthogonal to these projects.

The Pensando DSC-100 NIC [58] is similar to PANIC in
that it has an RMT pipeline and supports both hardware and
software offloads. However, the DSC-100 requires cores to
achieve offload chaining instead of a hardware scheduler.

The Fungible Data Processing Unit (DPU) is a NIC de-
sign that was recently announced in August 2020 [3]. Based
on publicly available documents [4, 5], it has a hardware
architecture that shares a few similarities with PANIC (e.g.,
processing cores, accelerators, a hardware work scheduler,
and a customized on-chip network). A head-to-head compari-

son of PANIC to the Fungible DPU would be an interesting
avenue for future work once the DPU is generally available.

PANIC is also similar to FairNIC [34], which improves
fairness between competing applications running on a com-
modity manycore NIC. However, PANIC provides features
not possible in FairNIC like chaining without involving a
CPU. Further, FairNIC helps motivate the need for PANIC
detailing the non-trivial costs of isolation on manycore NICs.
Adopting PANIC’s scheduler and non-blocking crossbar inter-
connect can solve these fundamental problems with manycore
NICs.

9 Conclusions
Programmable NICs are an enticing option for bridging the
widening gap between network speeds and CPU performance
in multi-tenant datacenters. But, existing designs fall short
of supporting the rich and high-performance offload needs
of co-resident applications. To address this need, we pre-
sented the design, implementation, and evaluation of PANIC,
a new programmable NIC. PANIC synthesizes a variety of
high-performance hardware blocks and data structures within
a simple architecture, and couples them with novel schedul-
ing and load balancing algorithms. Our analysis shows that
PANIC is amenable to an ASIC design. We also built a 100G
PANIC prototype on an FPGA, and conducted detailed exper-
iments that show that PANIC can isolate tenants effectively,
ensure high throughput and low latency, and support flexible
and dynamic chaining.
Acknowledgements: We thank our shepherd, Costin Raiciu,
and the anonymous OSDI reviewers for their feedback that
significantly improved the paper. We thank Suvinay Sub-
ramanian and Tushar Krishna for discussions on crossbar
designs and Tao Wang for his assistance with the artifact
evaluation. Brent E. Stephens and Kiran Patel were funded
by a Google Faculty Research Award and NSF Award CNS-
1942686. Aditya Akella and Jiaxin Lin were funded by NSF
Awards CNS-1717039 and CNS-1838733 and a gift from
Google.



References
[1] AES Hardware Accelerator. https://opencores.org/

projects/tiny_aes.

[2] Axi reference guide. https://www.xilinx.com/support/
documentation/ip_documentation/ug761_axi_
reference_guide.pdf.

[3] Fungible DPU: A New Class of Microprocessor Power-
ing Next Generation Data Center Infrastructure. https:
//www.fungible.com/news/fungible-dpu-a-
new-class-of-microprocessor-powering-next-
generation-data-center-infrastructure/.

[4] Fungible F1 Data Processing Unit. https://www.fungible.
com/wp-content/uploads/2020/08/PB0028.01.
02020820-Fungible-F1-Data-Processing-Unit.pdf.

[5] Fungible S1 Data Processing Unit. https://www.fungible.
com/wp-content/uploads/2020/08/PB0029.00.
02020811-Fungible-S1-Data-Processing-Unit.pdf.

[6] Intel ethernet switch fm10000 datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/
datasheets/ethernet-multi-host-controller-
fm10000-family-datasheet.pdf.

[7] SHA-3 Hardware Accelerator. https://opencores.org/
projects/sha3.

[8] Silicon at the speed of software. https://www.sifive.com.
Accessed: 2020-05-25.

[9] Vexriscv. https://spinalhdl.github.io/SpinalDoc-
RTD/SpinalHDL/Libraries/vexriscv.html.

[10] Vivado design suite. https://www.xilinx.com/products/
design-tools/vivado.html.

[11] ACCOLADE TECHNOLOGY. Accolade ANIC. https:
//accoladetechnology.com/whitepapers/ANIC-
Features-Overview.pdf.

[12] ALPHA DATA. ADM-PCIE-9V3 - High-Performance Network Accel-
erator. https://www.alpha-data.com/pdfs/adm-pcie-
9v3.pdf.

[13] ARASHLOO, M. T., LAVROV, A., GHOBADI, M., REXFORD, J.,
WALKER, D., AND WENTZLAFF, D. Enabling programmable trans-
port protocols in high-speed NICs. In Symposium on Networked Sys-
tems Design and Implementation (NSDI) (2020).

[14] ASANOVIĆ, K., AVIZIENIS, R., BACHRACH, J., BEAMER, S.,
BIANCOLIN, D., CELIO, C., COOK, H., DABBELT, D., HAUSER,
J., IZRAELEVITZ, A., KARANDIKAR, S., KELLER, B., KIM, D.,
KOENIG, J., LEE, Y., LOVE, E., MAAS, M., MAGYAR, A., MAO,
H., MORETO, M., OU, A., PATTERSON, D. A., RICHARDS, B.,
SCHMIDT, C., TWIGG, S., VO, H., AND WATERMAN, A. The rocket
chip generator. Tech. Rep. UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr 2016.

[15] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM) (2011).

[16] BAREFOOT. Barefoot Tofino. https://www.
barefootnetworks.com/technology/#tofino, 2017.

[17] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In IMC (2010).

[18] BERTONI, G., DAEMEN, J., PEETERS, M., AND ASSCHE, G. The
keccak reference, version 3.0. NIST SHA3 Submission Document
(January 2011) (2011).

[19] BERTONI, G., DAEMEN, J., PEETERS, M., AND VAN ASSCHE, G.
Keccak sponge function family main document. Submission to NIST
(Round 2) (2009).

[20] BHAGWAN, R., AND LIN, B. Fast and scalable priority queue architec-
ture for high-speed network switches. In Proceedings IEEE INFOCOM
2000. Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies
(Cat. No. 00CH37064) (2000).

[21] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IZZARD, M., MUJICA, F. A., AND HOROWITZ, M. Forwarding
metamorphosis: fast programmable match-action processing in hard-
ware for SDN. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2013).

[22] BROADCOM. Stingray SmartNIC Adapters and IC.
https://www.broadcom.com/products/ethernet-
connectivity/smartnic.

[23] CAVIUM CORPORATION. Cavium CN63XX-NIC10E. http:
//cavium.com/Intelligent_Network_Adapters_
CN63XX_NIC10E.html.

[24] CAVIUM CORPORATION. Cavium LiquidIO. http:
//www.cavium.com/pdfFiles/LiquidIO_Server_
Adapters_PB_Rev1.2.pdf.

[25] CELIO, C., CHIU, P.-F., ASANOVIĆ, K., NIKOLIĆ, B., AND PATTER-
SON, D. Broom: an open-source out-of-order processor with resilient
low-voltage operation in 28-nm cmos. IEEE Micro (2019).

[26] CELIO, C., CHIU, P.-F., NIKOLIC, B., PATTERSON, D., AND
ASANOVIC, K. Boom v2, 2017.

[27] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM) (2017).

[28] CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching - extended version. https://cs.nyu.
edu/˜anirudh/sigcomm17_drmt_extended.pdf, 2017.

[29] DAEMEN, J., AND RIJMEN, V. The design of Rijndael: AES-the
advanced encryption standard. 2013.

[30] DRAGOJEVIĆ, A., NARAYANAN, D., HODSON, O., AND CASTRO,
M. FaRM: Fast remote memory. In Symposium on Networked Systems
Design and Implementation (NSDI) (2014).

[31] EXABLAZE. ExaNIC V5P. https://exablaze.com/
/exanic-v5p.

[32] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D., DABAGH,
A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V., CAULFIELD,
A., CHUNG, E., CHANDRAPPA, H. K., CHATURMOHTA, S.,
HUMPHREY, M., LAVIER, J., LAM, N., LIU, F., OVTCHAROV,
K., PADHYE, J., POPURI, G., RAINDEL, S., SAPRE, T., SHAW,
M., SILVA, G., SIVAKUMAR, M., SRIVASTAVA, N., VERMA, A.,
ZUHAIR, Q., BANSAL, D., BURGER, D., VAID, K., MALTZ, D. A.,
AND GREENBERG, A. Azure accelerated networking: SmartNICs in
the public cloud. In Symposium on Networked Systems Design and
Implementation (NSDI) (2018).

[33] FORENCICH, A., SNOEREN, A. C., PORTER, G., AND PAPEN, G.
Corundum: An open-source 100-Gbps NIC. In 28th IEEE Interna-
tional Symposium on Field-Programmable Custom Computing Ma-
chines (2020).

[34] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C. Smart-
NIC performance isolation with FairNIC: Programmable networking
for the cloud. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2020).

[35] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE, J., AND
LIPSHTEYN, M. RDMA over commodity Ethernet at scale. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM) (2016).

https://opencores.org/projects/tiny_aes
https://opencores.org/projects/tiny_aes
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/news/fungible-dpu-a-new-class-of-microprocessor-powering-next-generation-data-center-infrastructure/
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0029.00.02020811-Fungible-S1-Data-Processing-Unit.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://opencores.org/projects/sha3
https://opencores.org/projects/sha3
https://www.sifive.com
https://spinalhdl.github.io/SpinalDoc-RTD/SpinalHDL/Libraries/vexriscv.html
https://spinalhdl.github.io/SpinalDoc-RTD/SpinalHDL/Libraries/vexriscv.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf
https://cs.nyu.edu/~anirudh/sigcomm17_drmt_extended.pdf
https://exablaze.com//exanic-v5p
https://exablaze.com//exanic-v5p


[36] HUMPHRIES, J. T., KAFFES, K., MAZIÈRES, D., AND KOZYRAKIS,
C. Mind the Gap: A case for informed request scheduling at the NIC.
In ACM Workshop on Hot Topics in Networks (ACM HotNets) (2019).

[37] IBANEZ, S., SHAHBAZ, M., AND MCKEOWN, N. The case for a
network fast path to the CPU. In ACM Workshop on Hot Topics in
Networks (ACM HotNets) (2019).

[38] INTEL. Intel 82599 10 GbE controller datasheet. http:
//www.intel.com/content/dam/www/public/us/en/
documents/datasheets/82599-10-gbe-controller-
datasheet.pdf.

[39] JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM) (2015).

[40] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Datacenter rpcs
can be general and fast. In Symposium on Networked Systems Design
and Implementation (NSDI) (2019).

[41] KAPOOR, R., SNOEREN, A. C., VOELKER, G. M., AND PORTER, G.
Bullet trains: A study of NIC burst behavior at microsecond timescales.
In Conference on Emerging Networking Experiments and Technologies
CoNEXT (2013).

[42] KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
FlexNIC. In ASPLOS (2016).

[43] KIM, J., DALLY, W. J., AND ABTS, D. Flattened butterfly: a cost-
efficient topology for high-radix networks. In Proceedings of the 34th
annual International Symposium on Computer Architecture (ISCA)
(2007).

[44] KUON, I., AND ROSE, J. Measuring the gap between fpgas and asics.
In Proceedings of the 2006 ACM/SIGDA 14th International Symposium
on Field Programmable Gate Arrays (2006).

[45] LE, Y., CHANG, H., MUKHERJEE, S., WANG, L., AKELLA, A.,
SWIFT, M. M., AND LAKSHMAN, T. V. UNO: Uniflying host and
smart NIC offload for flexible packet processing. In SoCC (2017).

[46] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. KV-Direct: High-performance in-memory
key-value store with programmable NIC. In SOSP (2017).

[47] LI, B., TAN, K., LUO, L., LUO, R., PENG, Y., XU, N., XIONG,
Y., AND CHENG, P. ClickNP: Highly flexible and high-performance
network processing with reconfigurable hardware. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM)
(2016).

[48] LIU, M., CUI, T., SCHUH, H., KRISHNAMURTHY, A., PETER, S.,
AND GUPTA, K. Offloading distributed applications onto smartnics
using IPipe. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2019).

[49] LIU, M., PETER, S., KRISHNAMURTHY, A., AND
PHOTHILIMTHANA, P. M. E3: Energy-efficient microservices
on SmartNIC-accelerated servers. In Usenix Annual Technical
Conference (ATC) (2019).

[50] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KOZYRAKIS, C. Heracles: Improving resource efficiency at scale. In
International Symposium on Computer Architecture (ISCA) (2015).

[51] MARTY, M., DE KRUIJF, M., ADRIAENS, J., ALFELD, C., BAUER,
S., CONTAVALLI, C., DALTON, M., DUKKIPATI, N., EVANS, W. C.,
GRIBBLE, S., KIDD, N., KONONOV, R., KUMAR, G., MAUER, C.,
MUSICK, E., OLSON, L., RYAN, M., RUBOW, E., SPRINGBORN, K.,
TURNER, P., VALANCIUS, V., WANG, X., AND VAHDAT, A. Snap: a
microkernel approach to host networking. In SIGOPS (2019).

[52] MELLANOX TECHNOLOGIES. Innova - 2 Flex Programmable
Network Adapter. http://www.mellanox.com/related-
docs/prod_adapter_cards/PB_Innova-2_Flex.pdf.

[53] MELLANOX TECHNOLOGIES. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf.

[54] MELLANOX TECHNOLOGIES. NVIDIA Mellanox BlueField-2 DPU.
https://www.mellanox.com/products/bluefield2-
overview.

[55] MELLETTE, W. M., DAS, R., GUO, Y., MCGUINNESS, R., SNO-
EREN, A. C., AND PORTER, G. Expanding across time to deliver
bandwidth efficiency and low latency. In Symposium on Networked
Systems Design and Implementation (NSDI) (2020).

[56] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S.
Universal packet scheduling. In Symposium on Networked Systems
Design and Implementation (NSDI) (2016).

[57] NETRONOME. NFP-6xxx flow processor. https://netronome.
com/product/nfp-6xxx/.

[58] PENSANDO. DSC-100. https://pensando.io/wp-
content/uploads/2020/03/Pensando-DSC-100-
Product-Brief.pdf.

[59] PHOTHILIMTHANA, P. M., LIU, M., KAUFMANN, A., PETER, S.,
BODIK, R., AND ANDERSON, T. Floem: A programming system for
NIC-accelerated network applications. In Symposium on Operating
Systems Design and Implementation (OSDI) (2018).

[60] PONTARELLI, S., BIFULCO, R., BONOLA, M., CASCONE, C.,
SPAZIANI, M., BRUSCHI, V., SANVITO, D., SIRACUSANO, G.,
CAPONE, A., HONDA, M., HUICI, F., AND SIRACUSANO, G. Flow-
Blaze: Stateful packet processing in hardware. In Symposium on
Networked Systems Design and Implementation (NSDI) (2019).

[61] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. FairCloud: Sharing the network in
cloud computing. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM) (2012).

[62] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. SENIC: Scalable NIC for end-host
rate limiting. In Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2014).

[63] SEWELL, K., DRESLINSKI, R. G., MANVILLE, T., SATPATHY, S.,
PINCKNEY, N., BLAKE, G., CIESLAK, M., DAS, R., WENISCH,
T. F., SYLVESTER, D., ET AL. Swizzle-switch networks for many-
core systems. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 2, 2 (2012), 278–294.

[64] SHRIVASTAV, V. Fast, scalable, and programmable packet scheduler in
hardware. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2019).

[65] SHU, R., CHENG, P., CHEN, G., GUO, Z., QU, L., XIONG, Y.,
CHIOU, D., AND MOSCIBRODA, T. Direct universal access: Making
data center resources available to FPGA. In Symposium on Networked
Systems Design and Implementation (NSDI) (2019).

[66] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., KANAGALA, A., PROVOST, J., SIMMONS, J., TANDA, E.,
WANDERER, J., HÖLZLE, U., STUART, S., AND VAHDAT, A. Jupiter
rising: A decade of clos topologies and centralized control in google’s
datacenter network. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM) (2015).

[67] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-
rate switches. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM) (2016).

[68] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM) (2016).

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/products/bluefield2-overview
https://www.mellanox.com/products/bluefield2-overview
https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf


[69] STEPHENS, B., AKELLA, A., AND SWIFT, M. Your programmable
NIC should be a programmable switch. In ACM Workshop on Hot
Topics in Networks (ACM HotNets) (2018).

[70] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom: Flexible and
efficient nic packet scheduling. In Symposium on Networked Systems
Design and Implementation (NSDI) (2019).

[71] THOMAS, S., MCGUINNESS, R., VOELKER, G. M., AND PORTER,
G. Dark packets and the end of network scaling. In ANCS (2018).

[72] TILERA. Tile Processor Architecture Overview For the TILE-
GX Series. http://www.mellanox.com/repository/
solutions/tile-scm/docs/UG130-ArchOverview-
TILE-Gx.pdf.

[73] WENTZLAFF, D., GRIFFIN, P., HOFFMANN, H., BAO, L., EDWARDS,
B., RAMEY, C., MATTINA, M., MIAO, C.-C., BROWN III, J. F.,
AND AGARWAL, A. On-chip interconnection architecture of the tile
processor. IEEE Micro, 5 (Sept. 2007).

[74] WILTON, S. J. E., HO, C. H., LEONG, P. H. W., LUK, W., AND
QUINTON, B. A synthesizable datapath-oriented embedded FPGA
fabric. In Proceedings of the 2007 ACM/SIGDA 15th International
Symposium on Field Programmable Gate Arrays (FPGA) (2007).

[75] XILINX. Xilinx Alveo: Adaptable Accelerator Cards for Data Center
Workloads. https://www.xilinx.com/products/boards-
and-kits/alveo.html.

[76] ZILBERMAN, N., AUDZEVICH, Y., COVINGTON, G., AND MOORE,
A. NetFPGA SUME: Toward 100 Gbps as research commodity.

A Artifact Appendix

A.1 Abstract
This artifact contains the source code and test benches for
PANIC’s 100Gbps FPGA-based prototype. Our FPGA pro-
totype is implemented in pure Verilog. Features of the proto-
type include: the hybrid push/pull packet scheduler, the high-
performance switching interconnect, self-contained compute
units, and the lightweight RMT pipeline.

This artifact provides two test benches to reproduce the
results in Figure 8c and Figure 11a in the Vivado HDL simu-
lator.

A.2 Artifact check-list
• Compilation: Running this artifact requires Vivado Design

Suite [10]. Vivado v2019.x and v2020.1 WebPack are verified.

• Hardware: This artifact does not requires any specific hard-
ware.

• Metrics: This artifact measures PANIC’s receiving through-
put under different chaining models and traffic patterns.

• Output: The result will be printed to the console and log
files.

• Experiments: This artifact includes testbenches and running
scripts to replay Figure 8c and Figure 11a.

• Public link: https://bitbucket.org/uw-
madison-networking-research/panic_
osdi20_artifact

A.3 Description
A.3.1 How to access

This artifact is publicly available at https://bitbucket.
org/uw-madison-networking-research/panic_
osdi20_artifact.

A.3.2 Software dependencies

Running this artifact requires Vivado [10]. Vivado WebPack version
is license-free, and it has simulation capabilities to recreate our
results. Since installing the Vivado WebPack requires plenty of disk
space (>20GB), you can choose to instance an FPGA Developer
AMI in AWS (https://aws.amazon.com/marketplace/
pp/B06VVYBLZZ) to run this artifact. The FPGA Developer AMI
has pre-installed the required Vivado toolchain.

A.4 Experiment workflow
1. Check Vivado is Installed Correctly

$ v iv ad o −mode t c l
/ / E n t e r t h e Vivado Command P a l e t t e
Vivado% v e r s i o n
/ / v2019 . x and v2020 . 1 i s v e r i f i e d
Vivado% q u i t

2. Clone the Repo and Make Run

$ g i t c l o n e [ A r t i f a c t R e p o ]
$ cd p a n i c o s d i 2 0 a r t i f a c t
$ make t e s t p a r a l l e l
$ make t e s t s h a a e s

The make command first compiles the source code, then runs the
simulation tasks in Vivado. The test parallel test replays Figure 8c
and the test shaaes test replays Figure 11a.

A.5 Evaluation and expected result
The result will be printed to the console. The output will also be
logged in ./build/export sim/xsim/simulate.log. For the expected
output and analysis please reference Figure 8c and Figure 11a.

A.6 Notes
For more details about the code structure, please reference
https://bitbucket.org/uw-madison-networking-
research/panic_osdi20_artifact/src/master/
README.md

A.7 AE Methodology
Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts

http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://bitbucket.org/uw-madison-networking-research/panic_osdi20_artifact/src/master/README.md
https://www.usenix.org/conference/osdi20/call-for-artifacts
https://www.usenix.org/conference/osdi20/call-for-artifacts

	Introduction
	Motivation
	Requirements
	Limitations of Existing Designs
	Pipeline Designs
	Manycore Designs
	Reconfigurable Match+Action (P4) Designs


	PANIC Overview
	Design
	RMT Pipeline
	High Performance Interconnect
	Centralized Scheduler
	Hybrid Push/Pull Scheduling and Load Balancing
	Packet Scheduling
	Performance Provisioning:

	Compute Unit

	ASIC Analysis
	FPGA Prototype
	Evaluation
	Testbed and methodology
	PANIC System Microbenchmarks
	Comparison with the Pipeline Design
	RISC-V Core Performance
	Hardware Resource Usage
	End-to-End Performance

	Related Work
	Conclusions
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Software dependencies

	Experiment workflow
	Evaluation and expected result
	Notes
	AE Methodology


