
Cross-Platform Transpilation of Packet-Processing Programs
using Program Synthesis

Xiangyu Gao
xg673@nyu.edu

New York University, USA

Jiaqi Gao
jiaqi.g@alibaba-inc.com
Alibaba Cloud, USA

Karan Kumar Gangadhar
kk5409@nyu.edu

New York University, USA

Ennan Zhai
ennan.zhai@alibaba-inc.com

Alibaba Cloud, USA

Srinivas Narayana
sn624@cs.rutgers.edu

Rutgers University, USA

Anirudh Sivaraman
anirudh@cs.nyu.edu

New York University, USA

ABSTRACT
The proliferation of programmable network devices offers a wide
range of device options for developers of packet processing pro-
grams. However, there are several differences in programming lan-
guage usage, hardware resource constraints, and hardware architec-
ture across these devices. Programmers must understand multiple
programming languages and hardware designs to write programs
for various devices.

We propose an alternative: leveraging program synthesis to build
a transpiler, Polyglotter, that outputs programs for target hardware
devices from input programs written for source hardware devices.
This can reduce the efforts required to write algorithms across plat-
forms. Our evaluation results show that, compared to traditional
program rewriting methods, Polyglotter can quickly produce cor-
rect results with efficient use of hardware resources. We also outline
several directions for future work in such transpilers.

CCS CONCEPTS
• Networks → Packet-switching networks; Programmable
networks;

KEYWORDS
Programmable switches; program synthesis; programmable parser;
finite state machine; code generation; packet processing pipelines;

ACM Reference Format:
Xiangyu Gao, Jiaqi Gao, Karan Kumar Gangadhar, Ennan Zhai, Srinivas
Narayana, and Anirudh Sivaraman. 2024. Cross-Platform Transpilation of
Packet-Processing Programs using Program Synthesis. In The 8th Asia-
Pacific Workshop on Networking (APNet 2024), August 3–4, 2024, Sydney, Aus-
tralia. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3663408.
3663419

1 INTRODUCTION
Programmable network devices are becoming increasingly popular
because of their flexibility in supporting customized network func-
tions and their ability to handle packet processing workloads with
high throughput. Devices including Barefoot Tofino [5], Broadcom
Trident 4 [6], the Intel IPU [1], and the Pensando SmartNIC [4]
share similar architecture (e.g., RMT pipeline [8]) but have varying
hardware resource constraints. Although the emergence of these
hardware devices provides more choices, the diversity of their fea-
tures increases programmers’ difficulty in writing code for each
specific device.

To alleviate the difficulty of writing programs for multiple hard-
ware devices, we propose automatically generating these programs
using a program synthesis-based transpiler called Polyglotter. Given
as input a program written for a source device, Polyglotter will take
into consideration the hardware constraints of the target device
before generating programs that can run on the target device.

Program synthesis tools use an exhaustive search algorithm to
find an output program that is semantically equivalent to the in-
put program. Compared with performing transpilation based on
numerous rewriting rules, there are several benefits to incorporat-
ing program synthesis into the transpiler. First, it is impractical for
humans to exhaustively list all rewriting rules without ignoring cor-
ner cases. This is why we believe that traditional pattern-matching
compilers, consisting of many program rewrite rules, need to be re-
peatedly updated by adding new rules. Second, even if we could list
all possible rewriting rules, the program synthesis-based approach
can output more resource-efficient results as it can search through
all feasible solutions within the hardware resource constraints.
Manually-developed rules may guarantee semantic equivalence but
cannot ensure that the outcome is ideal in resource usage. Exceed-
ing available resources, such as pipeline stages in a programmable
switch, can lead to transpilation failures.

The workflow of our transpiler is represented in Figure 1. To
design our transpiler, we use hardware configuration files to help
the transpiler interpret the semantics of the input program and gen-
erate programs that follow the target hardware device’s resource
constraints. This requires the transpiler developers to be familiar
with the source and target hardware constraints (§2); and the pro-
gramming language semantics for the input and output programs
(§2). They need to ensure that output programs do not exceed the
target devices’ resource limit and are semantically equivalent to
input programs. All of these should be encoded into our transpiler.

However, building the transpiler using program synthesis re-
quires overcoming a key challenge: long running time due to the
large search space of all implementation candidates. Hence, our
design divides the whole synthesis problem into several smaller
steps, each of which only solves a subproblem (§3.3.3), either state
transition or packet field extraction, of the whole transpilation,
leading to faster transpilation speed.

We test this idea over P4 programs and NPL programs that ex-
ercise the packet parser on the Tofino switch [5] and Trident 4
switch [6]. The preliminary results (§4) show that Polyglotter can
quickly generate correct target programs that are semantically
equivalent to source programs. Compared with transpilation using

https://doi.org/10.1145/3663408.3663419
https://doi.org/10.1145/3663408.3663419

Input program
written in language
A (e.g., src.npl/p4)

Source hardware's
configuration (e.g.,
Trident 4/Tofino)

Target hardware's
configuration (e.g.,
Trident 4/Tofino)

Output program
written in language

B (e.g., target.p4/npl)

Synthesis-based
Transpiler

Figure 1: Workflow of the transpiler design where language
A and B can be the same or different.

several rewrite rules, our output is more efficient in terms of re-
source usage. We outline future directions to extend our approach
to entire packet processing programs including the parser, pipeline,
and stateful packet processing functions across devices.

2 WHERE IS TRANSPILATION USEFUL?
A transpiler should tackle the differences between the source/target
programming language designs and source/target hardware con-
straints. Below, we list several examples of language and hardware
differences that necessitate transpilation, with source and target
language snippets. When these examples occur concurrently in
one program, there could be a combinatorial explosion for the to-
tal number of semantically equivalent output options, each with
different usage for different types of hardware resources.

2.1 Wide state transition key

parser_node N0 {
... // pkt.field1 is 16-bit
switch(pkt.field1) {

0x0101 : next_node N1;
default : next_node N2;

}
}

state N0 {
transition select (pkt.field[0:8]) {

0x01 : N01;
default : N2;

}
}
state N01 {

transition select (pkt.field[8:16]) {
0x01 : N1;
default : N2;

}
}

source.npl target.p4

Figure 2: Transpiling a parser node with wide match key (16
bits) into multiple parser nodes with narrower match key (8
bits).

A hardware packet parser identifies headers and extracts packet
fields for subsequent processing in the ingress/egress switch pipeline.
A parser is commonly modeled as a finite state machine (FSM). Each
state is a parser node. Each parser node can take a packet field as
its state transition key and transit to subsequent states based on
the key’s value. However, hardware limits the bit width of a state
transition key and this limit varies across platforms. We may have
to convert one parser node on a particular hardware into multiple
parser nodes on a different hardware.

As a concrete example shown in Figure 2, N0 from the input
program on the LHS has a transition key pkt.field1 of size 16
with 2 switch cases. The language of the output program has a limit
on the transition key to be of size ≤ 8. As a result, the transpiler
needs to use 2 parser nodes, each of which checks 8 bits of the

transition key. One solution is presented on the RHS of Figure 2.
In general, when the size of the transition key is larger than the
transition key width limit of the target hardware, multiple parser
nodes are required in the transpiled program to express the same
semantics.

2.2 Table operations in parsers
In a parser, the allowed operations might be different across lan-
guages and hardware devices. In NPL programs, the language allows
parse break and parse continue to allow interleaving parser and
logical table operations. Specifically, the Trident switch hardware
jumps out of the parser after parse break, does a series of logical ta-
ble operations, and jumps back to the parser after parse continue.
However, such interleaving is not allowed in P4 programs. So the
transpiler should express the same behavior in a different manner
that is supported by the P4 programming language.

parser_node N0 {
...
parse_break(N1);

}
// Leave from parser node to logical table operation
logical_table T {

...
key_construct() {system_source = pkt.system_source;}
fields_assign() {

obj_bus.enable = enable;
obj_bus.pipelineuse = pipelineuse; // used in pipeline

}
}
parse_continue(N1); // return back to parser node
parser_node N1 {

if (ing_obj_bus.enable) {next_node N2;}
...

}

// pvs is a value set variable
value_set<bit<...>>(4) pvs;
state N0 {

...
transition select(pkt.system_source) {

pvs : N2;
default : accept;

}
}

control ingress {
Update(bit<16> pipelineuse) {

md.pipelineuse = pipelineuse;
}
table T {

key = {pkt.system_source : exact;};
action = {Update};

}
}

source.npl target.p4

Figure 3: Transpiling parse break/continue into the a value
set data structure and table operation in a pipeline.

The logical table in NPL performs match action operations based
on rules from the control plane. If we put one logical table between
2 parser nodes, the variables updated in the logical table might
influence the behavior of the subsequent parser node. We observe
that, depending on the rules programmed by the control plane, a
P4 value_setmay be used to mimic the same semantics of an NPL
table that influences the behavior of a downstream parser node.
A P4 value_set is a data structure that may be used as part of a
parser transition to check whether or not the value of a packet field
belongs to a set.

The NPL program in Figure 3 has one logical table between 2
parser nodes (parser N0 and parser N1). This table updates a bus field
(obj_bus.enable) that is used in parser node N1. Even though P4
does not support table operations within its parser, it can implement
the same semantic by using value_set. In this example, checking
the updated value of the bus field is equivalent to checking the
execution status of the logical table. Thus, we could know the
updated value by checking whether the key of the logical table is
in the match set or not using value_set.

Additionally, logical tables within the parser in languages such
as NPL might update variables that are used in the pipeline. In
Figure 3, obj_bus.pipelineuse is updated in one logical table
of the parser and used in the pipeline later. Given P4 language
cannot do temporary variable updates in the parser, the generated
transpiled program adds one extra P4 table at the beginning of the

pipeline to guarantee that the rest of the pipeline can witness the
latest value of obj_bus.pipelineuse. There could be other ways
to generate semantically-equivalent transpiled programs as well.

2.3 Multiple lookups per table

logical_table T {
...
key_construct() {

if (_LOOKUP0==1) {key = pkt.key1;}
if (_LOOKUP1==1) {key = pkt.key2;}

}
fields_assign() {

if (_LOOKUP0==1) {obj_bus.dst = port;}
if (_LOOKUP1==1) {obj_bus.src = port;}

}
}
T.lookup(0); T.lookup(1);

action T0A (...) {md.dst = port;}
table T0 {

key = {
pkt.flag : ... // decide first/second time
pkt.key1 : ...}

action = {T0A;}
}
action T1A (...) {md.src = port;}
table T1 {

key = {
pkt.flag : ... // decide first/second time
pkt.key2 : ...}

action = {T1A;}
}
T0.apply(); T1.apply();

table T1 {
key = {

pkt.recirulate : ...
pkt.key2 : ...}

action = {T0A; T1A;}
const entries = {

(0, ...) : T0A; {pkt.recirculate = 1;} // First time
(1, ...) : T1A; // Re-circulation time

}
}

T1.apply();

1

2

source.npl target1.p4

target2.p4

Figure 4: LHS shows an NPL program with 2 lookups for 1
logical table; the RHS shows 2 alternatives for the transpila-
tion results in P4.

We use packet headers and temporary variables to store interme-
diate information during the parsing process. We use the table data
structure to update packet headers or temporary variables based
on match-action rules. But there are differences in the # lookups
per table across languages (e.g., NPL vs P4).

The program on the LHS of Figure 4 shows one logical table in
NPL which can support 2 lookups. Allowing more than one lookup
per table can let programmers write more complex functions into
one table without usingmultiple tables. More benefits of this feature
in the NPL language can be seen from the NPL spec [2]. However,
P4 can only support one lookup for each table. This restriction
forces the transpiler to find non-trivial ways to express the same
functionality in P4.

We show two methods to implement the multiple lookup func-
tionality in P4. The method labeled 1○ in Figure 4 defines 2 tables,
each containing a copy of the match-action rules in the NPL table.
Each table maps to one lookup in the NPL’s logical table. We need
to add one extra boolean match key flag in each P4 table. If its
value is 0, it maps to the first lookup from NPL; otherwise, its value
is 1, meaning it is the second lookup from NPL.

It is also possible to use packet re-circulation to transpile multiple
lookups. 2○ of Figure 4 realizes such an implementation using only 1
table by adding an extra match key pkt.recirculate. The benefit
of re-circulation is that it can store useful information in a first pass
and continue processing packets in a second pass. But this may
reduce the throughput. The choice of which transpilation method
to use depends on the programmers’ objectives.

2.4 Initialization for temporary variables
The initialization approaches for temporary variables are different
in the NPL and P4 languages. Specifically, the NPL initializes all
temporary variables (called bus fields in the NPL program) through

one initialization function before the parser while P4 does so by
extracting bits from the input bit stream at the beginning of the
parser. This difference leads to a potential failure in transpilation.

/* Initialize a bus field
ing_obj_bus.field1 in ing_bus_init() */
function ing_bus_init() {

ing_obj_bus.field1 = XXX;
}
parser_node start {

root_node : 1;
switch(ing_obj_bus.field1) {

...
}

}

state start {
/* Initialize the metadata md
through packet extraction*/
pkt.extract(md);
transition select(md.field1) {

...
}

}

source_fail.npl

target.p4

/* Initialize a bus field
ing_obj_bus.field1 in ing_bus_init() */
function ing_bus_init() {

ing_obj_bus.field1 = XXX;
}
parser_node start {

extract_fields(ing_pkt.field1);
ing_obj_bus.field1 = ing_pkt.field1;

}

source_success.npl

Figure 5: Different ways to initialize temporary vars.
Figure 5 gives a concrete example. source_fail.npl initial-

izes ing_obj_bus.field1 and the initial value decides transition
logic in the parser node start. We cannot find an equivalent
expression in P4 due to its language design constraints. How-
ever, source_success.npl initializes ing_obj_bus.field1 but
its value is later updated by one extracted packet field. We can ex-
press this semantic through packet extraction shown in target.p4.

3 PRELIMINARYWORK: AUTOMATED
PARSER TRANSPILATION

We build Polyglotter, a cross-platform transpiler for the parser
portion of NPL and P4. This requires us to handle transpilation
examples such as those mentioned at §2.1 and §2.2. All other cases
described in §2 are beyond the parser and left for Polyglotter’s
future development. It consists of 3 main steps (Figure 7). In step 1,
Polyglotter generates the corresponding intermediate representa-
tion (IR) from the input program; step 2 turns the IR format into a
semantically equivalent version that follows the target hardware’s
constraints using program synthesis; in step 3, Polyglotter lifts the
synthesized IR format back to the target programming language.

3.1 IR design for parser behavior
Designing a new IR format can simplify complex data structures
(e.g., logical table in NPL and value set in P4) and help extend the
transpilation process across more hardware platforms and program-
ming languages. Verifying the semantic equivalence at the IR level
is much simpler and more generic.

The parser determines packet headers from an input bit stream
through a sequence of parser nodes. Therefore, the IR design should
be capable of reflecting the parser’s behavior (e.g., state transition
and packet header extraction). Inspired by [17], Figure 6 shows the
IR grammar. The general workflow of a parser starts from variable
declaration for packet fields, temporary variables, and extraction
status bit vectors. Then, the whole parser will be represented by a
nested if-then-else (ITE) block.

Parser node transition. We use a sequence of ITE blocks to
model the parser behavior. In the nested ITE statement, the predi-
cate consists of at least one clause and each clause checks whether

Literals: 𝑐 ::= NUMBER
Extraction status bit vector: 𝑏𝑣 ::= BIT VECTOR

Bit vector: 𝐼 ::= INPUT BIT VECTOR
Value sets: 𝑆 ::= 𝑆1 | 𝑆2 ... | 𝑆𝑘1

Packet fields: 𝑝𝑘𝑡 ::= 𝑓1 | 𝑓2 ... | 𝑓𝑘2
Temp variables: 𝑡𝑚𝑝 ::= 𝑡1 | 𝑡2 ... | 𝑡𝑘3

Operations: 𝑜𝑝 ::= “==" | “in" | “="

Expressions: 𝑒 ::= 𝑐 | 𝑝𝑘𝑡 | 𝑡𝑚𝑝 | 𝑏𝑣 [𝑐] | 𝑆 | 𝐼 [𝑐 : 𝑐] | e op e

Predicates: 𝑝𝑟𝑒𝑑 ::= 𝑒 (&& 𝑒)∗ | 𝑇𝑅𝑈𝐸

Statements: 𝑠 ::= 𝑒 | 𝑠 ; 𝑠 | 𝜖 | if (𝑝𝑟𝑒𝑑) {𝑠 } |
if(𝑝𝑟𝑒𝑑) {𝑠 } (elif(pred) {s})∗ else{𝑠 }

Packet fields definition: 𝑝𝑘𝑡𝐷𝑒𝑓 ::= bit<c> 𝑝𝑘𝑡 ; 𝑝𝑘𝑡𝐷𝑒𝑓 | 𝜖
Temp variables definition: 𝑡𝑚𝑝𝐷𝑒𝑓 ::= bit<c> 𝑡𝑚𝑝 = 𝑐 ; 𝑡𝑚𝑝𝐷𝑒𝑓 | 𝜖

Bit vec definition: 𝑏𝑣𝑒𝑐𝐷𝑒𝑓 ::= bit<c> 𝑏𝑣 = {0, 0, ..., 0}; | 𝜖
𝑝 ∈ program ::= 𝑝𝑘𝑡𝐷𝑒𝑓 ; 𝑡𝑚𝑝𝐷𝑒𝑓 ; 𝑏𝑣𝑒𝑐𝐷𝑒𝑓 ; 𝑠

Figure 6: The BNF of IR for parser.

the value of one variable is equal to a constant or belongs to one
set. We include “True" as a possible predicate for completeness. All
these predicates are concatenated by “&&". The “||" logic can be
represented by using the elif statement it is not in the predicate IR.
If the predicate is satisfied, it will enter into the next level ITE block,
meaning the transition to the next parser node; the else keyword
can be considered as the default statement in the parser.

P4 program for Intel
Tofino

NPL program for
Broadcom Trident 4

Trident IR

Step 3:
IR to program

 Step 1:
Program to IR

Step 3:
IR to program

Step 1:
Program to IR

Step 2: IR to IR using
Program Synthesis

Tofino IR

Figure 7: 3 steps in Polyglotter’s transpilation.

Packet field extraction. There are 3 types of operators (e.g.,
==, in, and =) in the IR design, and the operator “=" is used to
define the packet field extraction behavior. To be specific, bv is
a set of indicator variables, each of which represents whether a
corresponding packet field is extracted or not. Setting its value to 1
means this packet field should be extracted in the parser node. Then,
we update a packet field’s value by setting it to one slice of a input
bit stream using I[c:c]. Our current IR design is expressive to express
parser for both Tofino and Trident 4 programmable switches.

3.2 Step 1: Generating low-level IR
In this IR generation step, developers need to make sure that the
generated IR is semantically equivalent to the input program and
complies with hardware capabilities. Polyglotter analyzes the in-
put program’s semantics and outputs the IR format. This process
involves predicate generation and packet extraction generation.

Predicate generation. In our IR design (Figure 6), one predi-
cate might include several clauses and each clause is to compare a
variable (e.g., packet field or temporary variable) against either a
constant or a set. In hardware such as Tofino, it does not support
temporary variable modification in the parser so we should treat
packet fields and bus fields differently. Specifically, if the variable

parser_node N0 {
...
obj_bus.enable = pkt.enable;
next_node : N1;

}
parser_node N1 {

extract(pkt.field);
if (pkt.field == 0x1111 && obj_bus.enable == 1){

next_node N2;
}
next_node ingress;

}

// fields[idx] represents pkt.field's extraction status
fields[idx] = 1;
if (pkt.field == 0x1111 && pkt.enable == 1) {

// Go to the ITE of N2
} else {

// Go to ITE of ingress
}

Generated IR (used as spec)

Figure 8: Predicate generation.

is a packet field, we should leave it as it is. However, when the vari-
able is a temporary variable, Polyglotter does a backward dataflow
analysis to find all possible packet bits that influence this temporary
variable, and then replaces the predicate by one or more conditions
over those packet bits.

As a concrete example, the predicate in Figure 8 has 3 clauses
“pkt.field==0x1111 && obj_bus.enable==1". The predicate replace-
ment pass leaves the packet field (e.g., pkt.field) as it is. How-
ever, it has to determine the packet bits that affect the value of
bus fields. Given the temporary variable obj_bus.enable is af-
fected by pkt.enable, the clause obj_bus.enable==1 is replaced
by pkt.enable==1.

Packet extraction generation. Each parser node might extract
a range from the input bit stream and set values to several packet
fields. Our IR design regards the whole parser as a nested ITE block.
Polygotter uses one bit vector to represent each packet field’s ex-
traction status. In the output IR, we represent the packet extraction
behavior by setting the corresponding indicator variables to 1.

struct ing_pkt_t {
fields {

bit[4] field1; bit[4] field2;
}

}
packet ing_pkt_t pkt;

parser_node N0 {
extract(pkt.field1);
switch (pkt.field1) {

0 : next_node N1;
default : next_node ingress;

}
}
parser_node N1 {

extract(pkt.field2);
next_node ingress;

}

Input to the program: bit[8] I;

// Variable definition
bit[2] bv = {0, 0}; // 2 fields in input packet
bit[4] pkt_field1; bit[4] pkt_field2;

bv[0] = 1;
pkt_field1 = I[0 : 4]; // extract(pkt.field1);
if (pkt_field1 == 0) {

bv[1] = 1;
pkt_field2 = I[4 : 8]; // extract(pkt.field2);

} else {
...

}

source.npl Output IR

Figure 9: The generated IR for one given input NPL program.

Output IR from input program. After predicate generation
and packet extraction generation, we can output the IR format.
Figure 9 provides one concrete example of the IR generation process
for anNPL program. Specifically, in the output IR, we use a bit vector
variable, bv, and some other bit vector variables, field1 and field2, to
record the extraction status of each packet field. There are 2 fields
in the input program so the size of the bit vector is 2 as well. All
other bit vectors are used to store the extracted packet fields’ value.
The whole parser is presented by a large “nested" ITE statement,
where each if predicate is one state transition logic, determining
the subsequent packet extraction behavior of the parser.

3.3 Step 2: Generating IR for target device
Polyglotter encodes hardware constraints and generates the target
IR format through program synthesis. The output program not only
guarantees the semantic equivalence but also obeys the resource

constraints. We divide the IR to IR transformation into 2 parts:
synthesis for predicates and synthesis for packet extraction.

// fields[idx] represents pkt.field's extraction status
// pkt.field is 16-bit;
// pkt.enable and obj_bus.flag is 1-bit
fields[idx] = 1;

if (pkt.field == 0x1111 && pkt.enable == 1
&& obj_bus.flag == 1) {

// Go to the ITE of N2
} else {

// Go to ITE of ingress
}

// fields[idx] represents pkt.field's extraction
status
fields[idx] = 1;

if (pkt.field == 0x1111) {
if (pkt.enable == 1 && obj_bus.flag == 1) {

// Go to the ITE of N2
} else { // Go to ITE of ingress}

} else { // Go to ITE of ingress}

Packet_extraction(??);
if (clause1 is True) {

if (clause2 is True) {...}
} else {...}

1 2

3
IR output from program

synthesis

Figure 10: Synthesis-based IR generation for target.

3.3.1 Synthesis for predicates. Polyglotter splits the predicate
synthesis into multiple sub-problems, each of which takes all predi-
cates within one parser node as the specification. Hardware resource
constraints such as the size limit of a state transition key will be
encoded. As an example, if the target device limits the transition key
to be at most 16 bits, we cannot fit the if-condition (the transition
key is 18 bits) in 1○ of Figure 10 into 1 parser node and need to use
2 in 2○ of Figure 10. In addition, Polyglotter captures common con-
ditions in all if-predicates and places them before other conditions
in the generated IR. Its benefits will be discussed in §3.3.3.

3.3.2 Synthesis for packet extraction. The next step is to decide
where in the process of parsing we extract specific packet fields.
In this case, the specification is the generated IR after predicate
synthesis where we could replace all conditions with one boolean
variable; while the implementation is a partial program where we
put one packet extraction function in each if-else body. The function
will decide what new fields to extract in this node. In 3○ of Figure 10,
the transpiler represents the packet field extraction behavior by
setting the indicator variable fields[idx] to 1. Polyglotter ensures
that each packet field is extracted at most once in the parser.

3.3.3 Why do we use the program synthesis-based approach?
Synthesis for ITE predicates. Polyglotter generates the imple-
mentation of all ITE predicates within a parser node at one time.
Usually, the state transition logic within one parser node is not
that complex so the synthesis engine can output the result quickly.
Besides, compared with a manual approach to creating the result,
using synthesis tools can reduce resource usage (e.g., # transitions
and # nodes). For example, in Figure 11 the input program does a

N0

parser_node N0 {
switch(I[0:3]) {

0b1101 : {next_node : N1};
0b0001: {next_node : N2};
default : {next_node : N3};

}
}

N01

N2N3

I[2:3] == 0b01

N1

I[0:1] == 0b11

otherwise

otherwise

I[0:1] == 0b00

N02

I[2:3] == 0b01otherwise

Default: 6 parser nodes with 7 transition arrows

N0

N00

N3

I[0:1] == 0b11

N1

I[2:3] == 0b01 otherwise

otherwise

Better: 5 parser nodes with 5 transition arrows

N2

I[0:1] == 0b00

Figure 11: Two semantically equivalent transpilation results
with the limit of transition key size to be 2 bits. Each result
uses different resources.

parser state transition depending on one 4-bit variable. The target
hardware can match at most 2 bits in one parser node. One way is
to match the first 2 bits and then the next 2 bits in sequence before

deciding the next transition parser node. This example is illustrated
as in the first tree-based finite state machine which uses 6 parser
nodes and 7 transition arrows. However, the right figure shows
an alternative, which only needs 5 parser nodes and 5 transition
arrows by matching the last 2 bits before matching the first 2 bits. In
our synthesis procedure, we let the synthesis engine find common
conditions among all predicates and the transpiler will prioritize
putting these common conditions before others.
Synthesis for packet extraction. We let the synthesis solver de-
termine the concrete extraction behavior in each generated parser
node. Given there are several paths from the first parser node to
the last one, it is both time-consuming and error-prone for humans
to manually figure out a solution. However, a synthesis solver can
generate the correct result quickly.
Benefits of decoupling predicate synthesis and packet extrac-
tion synthesis. Compared to generating the whole parser from
one synthesis problem, we need to do implementation configura-
tions exploration. Each configuration is determined by different
hyper-parameters (e.g., the number of state transition rules per
parser node, the value of each constant value, and the total num-
ber of parser nodes). Instead, Polyglotter generates the IR format
for state transition predicate and packet extraction in sequence.
Synthesizing all ITE predicates can give us the ITE skeleton and
the subsequent synthesis is to fill packet extraction behaviors into
each ITE’s body. Therefore, such decomposition not only makes the
transpilation faster but also avoids the skeleton exploration work.

3.3.4 Why do we use different granularity for predicate and ex-
traction synthesis? We synthesize all predicates within a parser node
because common conditions may exist among all these predicates.
There are other alternatives. For instance, we could synthesize pred-
icate by predicate, but this may lose the benefits of finding common
conditions from these predicates; if we synthesize all paths within
the whole parser together, there may be no conditions shared by
them. Synthesizing all packet extraction operations for the whole
parser is a good balance. First of all, the search space is propor-
tional to # packet fields and # parser nodes, which is in a reasonable
size; additionally, this choice can leverage the advantage that some
packet extraction behavior can be shared across paths instead of
appearing multiple times.

3.4 Step 3: Lifting to switch program
The last step is to turn the IR back to a complete program written in
the target language that can run over the target hardware. This step
can be considered as the reversed process for step 1. The concrete
implementation is just a straightforward rewriting process. For
instance, in our IR design, we use indicator variables to determine
the extraction status of a packet bit but in a high-level program,
we should replace it with corresponding keywords that follow the
language syntax. Currently, we manually transform the synthesized
output IR to the high-level programs in the target language.

4 EVALUATION
We measure Polyglotter in 2 main parts. Correctness: can it cor-
rectly generate the output program within a reasonable time pe-
riod? Efficiency: how many resources does the output program
consume?

Program Rule-based transpilation Polyglotter
nodes # transition depth # nodes # transition depth

Wide Key 6 7 3 5 5 3
Parser break/continue 3 3 3 1 0 1

Temporary variable initialization 1 0 1 1 0 1
Move update to pipeline 2 2 2 2 1 2

Table 1: Resource usage comparison.
Setup.We generate benchmarks by extracting portions of one

NPL program used in production. All these benchmarks reflect
some features mentioned in (§2) because we want to check whether
Polyglotter can successfully realize the transpilation for programs
with these features. The syntax of the output P4 program is checked
by the commercial Tofino compiler and the semantics are verified
manually. Currently, Polyglotter focuses on the parser portion and
realize the transpilation from a NPL program for the Trident 4
switch to a P4 program for the Tofino switch. We plan to extend it
into the pipeline portion and realize multi-directional transpilation
across languages in the future.

Results. Preliminary results are in Table 1. The rule-based tran-
spilation implements a series of rewriting rules to get the output
program, including dividing a condition with a big transition key
into several conditions with small transition keys in order. All these
rules might generate locally optimal results but the combination
of several rules can be far from the globally optimal outcome. In
fact, Polyglotter can successfully generate correct output for 4 rep-
resentative benchmarks that fit the target hardware’s constraints
within seconds. In terms of the resource usage, Polyglotter can
output results that use fewer number of # nodes, # transition, and
the depth of the parser. In addition, it is useful to decompose the
whole synthesis problem into 2 subproblems (e.g., predicate and
packet extraction) to speed up the transpilation procedure.

5 RELATEDWORK
Programming languages for programmable network devices.
P4 [3] and NPL [2] are widely used programming languages for en-
gineers to develop programs for high-speed network devices. Many
domain-specific languages (DSLs) have emerged in academia to
remedy some of the shortcomings of P4 and NPL. Examples include
Lyra [10], microP4 [20], Domino [18], Lucid [19], FlightPlan [21],
P4All [15] and NetKAT [7]. Different languages serve different
design purposes, such as offering convenient data structures [15]
and incorporating the target hardware’s specific features [10] [11].
Our work, with a focus on cross-platform transpilation of existing
DSLs, is complementary to the design work of new DSLs. This
paper aims to unify features of different languages and hardware
devices by building a cross-platform transpiler. This could avoid
forcing programmers to understand several language-specific and
hardware-specific features.
Program synthesis for compilers. Program synthesis [14] selects
one program from a space of programs such that this program is se-
mantically equivalent to the input specification. This technique was
used in compiler design (e.g., Chipmunk [11] and CaT [12]) for pro-
grammable network devices. However, their focus is to compile a
high-level packet processing program into low-level representation
without considering the parser portion of the program. In addi-
tion, the output of our proposed transpiler is a high-level program
that satisfies the constraints of a target that can have a different
architecture from the source.
Expressing and verifying parser behavior. The principles of
parser design were discussed by Gibb et al. [13]. We can consider

a parser as a finite state machine (FSM). The state transition logic
can be determined by comparing certain fields against constants
and each parser node executes packet extractions to identify packet
headers from the input bit stream. Leapfrog [9] proposes a new
framework to verify the equivalence of 2 parser structures. However,
our goal is to generate a new parser through a synthesis procedure,
which is orthogonal to their implementation.

6 FUTUREWORK
In this section, we discuss 3 future directions.

Is the transpiler retargetable to a more complex parser
structure? At a high level, a parser identifies headers and ex-
tracts packet fields for subsequent processing in the ingress/egress
pipeline. Different hardware parsers might support various opera-
tions including specific hardware constraints and configuration. As
an example, Kangaroo [16] supports a non-streaming parser design
that does not limit the window size while Gibb et al. [13] designs a
streaming packet parser that restricts the window size. So the natu-
ral question becomes: could we easily tailor our synthesis-based
transpiler to parsers in various hardware devices? We believe this
is possible but requires the transpiler to encode new operations
and adjust the setting to be consistent with the target hardware’s
constraints.

Is the transpiler extensible to the packet processing pipeline
portion of a network device? The current implementation of the
transpiler is over the parser level of a packet processing program
but we want to extend to the full program finally. Then, the research
question is: can we encode the computation capabilities (e.g., ALU
and extern functions) into our transpiler? Can the transpiler encode
all hardware constraints automatically through a unified hardware
description language? Such an extension can help the transpiler go
beyond the parser and realize program-to-program transpilation.

Can we develop a transpiler for software platforms? This
paper is about developing a transpiler for various programmable
network devices. Can we extend the technique to software targets
such as eBPF or DPDK framework? In such cases, the transpiler
needs to transform the P4 to C program. It can focus less on the
hardware constraints or language features but should pay more
attention to the performance of the output program (e.g., runtime).

7 CONCLUSION
The proliferation of programmable network devices motivates en-
gineers to write programs for different targets. This paper proposes
to build a program synthesis-based transpiler, Polyglotter, that real-
izes transpilation for the parser part of P4 and NPL programs over
Tofino and Trident 4 programmable switches. Our initial results
show the correctness and efficiency of Polyglotter. We hope our
work can prompt further research on the transpiler design across
more network languages and hardware devices.

ACKNOWLEDGMENTS
We are grateful to the anonymous APNet reviewers for their valu-
able comments on previous drafts of this paper.We thank Tiancheng
Hou, Tao Wang, Fabian Ruffy, and Zhanghan Wang for their help
in understanding the parser architecture in detail. This work was
supported in part by NSF grants CNS-2008048 and CNS-1910796.

REFERENCES
[1] [n. d.]. Intel® Infrastructure Processing Unit (Intel® IPU). https://www.intel.

com/content/www/us/en/products/details/network-io/ipu.html. ([n. d.]).
[2] [n. d.]. NPL Specification. https://github.com/nplang/NPL-Spec. ([n. d.]).
[3] [n. d.]. P4-16 language specification. https://p4.org/p4-spec/docs/P4-16-v1.1.

0-spec.html. ([n. d.]).
[4] [n. d.]. Pensando Distributed Services Architecture SmartNIC. http://www.

servethehome.com/pensando-distributed-services-architecture-smartnic/. ([n.
d.]).

[5] [n. d.]. Product Brief Tofino Page | Barefoot. https://barefootnetworks.com/
products/brief-tofino/. ([n. d.]).

[6] [n. d.]. Trident 4 / BCM56690 Series. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56690. ([n. d.]).

[7] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: semantic foundations
for networks (POPL ’14). Association for Computing Machinery, New York, NY,
USA, 113–126. https://doi.org/10.1145/2535838.2535862

[8] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorphosis:
fast programmable match-action processing in hardware for SDN. SIGCOMM
Comput. Commun. Rev. 43, 4 (aug 2013), 99–110. https://doi.org/10.1145/2534169.
2486011

[9] Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett.
2022. Leapfrog: certified equivalence for protocol parsers. In Proceedings of the
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI 2022). Association for Computing Machinery, New
York, NY, USA, 950–965. https://doi.org/10.1145/3519939.3523715

[10] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,
Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform
Language and Compiler for Data Plane Programming on Heterogeneous ASICs.
In ACM SIGCOMM.

[11] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish Kis-
han Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas Narayana,
and Aarti Gupta. 2020. Switch Code Generation Using Program Synthesis (SIG-
COMM ’20). New York, NY, USA, 44–61. https://doi.org/10.1145/3387514.3405852

[12] Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong Zhu,
Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. 2023. CaT: A Solver-
Aided Compiler for Packet-Processing Pipelines. In ACM ASPLOS. New York, NY,
USA, 72–88. https://doi.org/10.1145/3582016.3582036

[13] Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013. Design
principles for packet parsers. In Architectures for Networking and Communications
Systems. IEEE, 13–24.

[14] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119. https:
//doi.org/10.1561/2500000010

[15] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,
and David Walker. 2022. Modular Switch Programming Under Resource Con-
straints. In USENIX NSDI.

[16] Christos Kozanitis, John Huber, Sushil Singh, and George Varghese. 2010. Leaping
Multiple Headers in a Single Bound: Wire-Speed Parsing Using the Kangaroo
System. In 2010 Proceedings IEEE INFOCOM. 1–9. https://doi.org/10.1109/INFCOM.
2010.5462139

[17] Muhammad Shahbaz and Nick Feamster. 2015. The case for an intermediate
representation for programmable data planes. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 3, 6 pages.
https://doi.org/10.1145/2774993.2775000

[18] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
ACM SIGCOMM.

[19] John Sonchak, Devon Loehr, Jennifer Rexford, and David Walker. 2021. Lucid: A
Language for Control in the Data Plane. In ACM SIGCOMM.

[20] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate Foster. 2020.
Composing dataplane programs with 𝜇P4. In ACM SIGCOMM.

[21] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang Han, Nis-
hanth Shyamkumar, Shivani Burad, André DeHon, and Boon Thau Loo. 2021.
Flightplan: Dataplane disaggregation and placement for p4 programs. In USENIX
NSDI.

https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu.html
https://github.com/nplang/NPL-Spec
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
http://www.servethehome.com/pensando-distributed-services-architecture-smartnic/
http://www.servethehome.com/pensando-distributed-services-architecture-smartnic/
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56690
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56690
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/3519939.3523715
https://doi.org/10.1145/3387514.3405852
https://doi.org/10.1145/3582016.3582036
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1109/INFCOM.2010.5462139
https://doi.org/10.1109/INFCOM.2010.5462139
https://doi.org/10.1145/2774993.2775000

	Abstract
	1 Introduction
	2 Where is Transpilation Useful?
	2.1 Wide state transition key
	2.2 Table operations in parsers
	2.3 Multiple lookups per table
	2.4 Initialization for temporary variables

	3 Preliminary Work: Automated Parser Transpilation
	3.1 IR design for parser behavior
	3.2 Step 1: Generating low-level IR
	3.3 Step 2: Generating IR for target device
	3.4 Step 3: Lifting to switch program

	4 Evaluation
	5 Related Work
	6 Future work
	7 Conclusion
	Acknowledgments
	References

