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Background. Software packet processing must be high
throughput, low latency, and CPU-efficient. Over time, the
academic and industry networking communities have been
improving the performance of packet processing on endpoints
by removing software from the critical packet-processing path.
In this work, we focus on programmable NIC offloads, the
ability to process packets on programmable components of
emerging network interface cards (NICs) such as Mellanox
BlueField, Fungible DPUs, Intel IPUs, and Pensando [1, 2].
These emerging NIC platforms contain both general-purpose
programmable CPU cores (e.g., ARM) as well as custom
accelerators, notably high-speed packet-processing pipelines.

Offloading middlebox packet-processing tasks, such as im-
plementing a Maglev load balancer or a port-knocking fire-
wall, to programmable NICs is not easy. Packet processing
pipelines [4] achieve high throughput by processing several
packets simultaneously across stages while running at a high
clock rate. However, it is challenging to support complex state-
ful operations, i.e., maintaining memory across packets [6],
say for monitoring or control. The first reason is that any
pipeline stage that implements a stateful operation has to read,
modify, and write its output back in a very short time (e.g., one
clock cycle) to ensure high pipeline throughput. This limits
the expressiveness of the operation. Second, high clock rates
limit the density (and hence sizes) of the memories used to
maintain state across packets. In contrast, the general-purpose
cores on NICs support expressive instruction sets, and are
augmented with large memories. However, each core is de-
signed to be smaller and slower than server CPU cores, due
to limitations in the NIC power budget and form factor.

This project seeks to combine the speed of pipelines with
the expressiveness and statefulness of general-purpose cores.
Motivation. Since a pipeline can process packets at line rate,
the packet-processing performance of a programmable NIC
is limited by its cores. However, a single general-purpose
on-NIC core cannot meet line rate while running complex
programs. It is natural to ask how to leverage multiple cores
to process packets faster. To use multiple cores, prior work
uses flow affinity, i.e., assigning packets accessing the same
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state in memory (we call such groups of packets flows) to
the same core, which avoids different cores contending to
access the same memory. For example, receive-side scaling
(RSS) is typically configured to hash packet fields, and choose
a fixed CPU core to process all packets with a fixed hash.
However, under hash collisions of heavy flows (known to
occur frequently in heavy-tailed networking workloads, e.g.,
[3]), processing cores are easily saturated. Hence, the achieved
tail latency is bottlenecked by that of a single (slow) core.
Our Solution. In networking, packet spraying is a common
technique to evenly spread across load network paths. We
seek to adopt packet spraying for stateful packet processing
code. However, to enable cores to process overlapping sets of
flows, we should completely remove shared state across cores.
We show that with a little help from the pipeline available on
the programmable NIC, packet spraying may enable running
stateful applications with zero cross-core synchronization for
any distribution of packets to flows.

Our idea is to program the pipeline to spray packets in a
round-robin fashion across cores. Each core runs an indepen-
dent, shared-nothing copy of the application, with the appli-
cation state (e.g., TCP connection state) fully replicated in its
local memory. In addition to the sprayed packet, the pipeline
also piggybacks sufficient information on the sprayed packet
to help the recipient core reconstruct the application’s state
with respect to the packets that the core missed. Instead of
synchronizing state explicitly across cores, synchronization
is performed implicitly by using the pipeline as a reliable se-
quencer of all packets, updating the replicated state machine
running on each core.
An example. Consider Fig. 1. A pipeline and three cores are
used to process packets here. As shown in Fig. 1a, the pipeline
sprays packets (i.e., pi, pi+1, pi+2) in a round-robin fashion
across cores (i.e., core1,core2,core3). Further, the pipeline
stores a small amount of state shared across all packets. Specif-
ically, if there are n cores, the pipeline stores the recent packet
history consisting of the packet fields from the last n pack-
ets which are relevant to evolving the application-level state.
Prior work on circular buffers implemented on switches [5]
has shown that it is feasible to update packet histories at line
rate on pipelines. Note that this packet history is updated
only by the pipeline and is never written to by the cores. In
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(a) The pipeline stores relevant packet fields and sends packets along with fields on
the packets each core missed to cores in a round-robin fashion.
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(b) Each core leverages the missing packet fields to
process the sprayed packet independently.

Figure 1: Overview of the shared-nothing approach. pi is the ith packet received by the smartNIC, f (pi) is state-computation-
relevant fields from pi, and Statei is the program state value updated using packets p1, ..., pi in order.

the example in Fig. 1(a), the packet history supplied to core1
processing packet pi is f (pi−2), f (pi−1). Each core updates
its local application state by implementing vector packet pro-
cessing on n packets rather than just the one packet sprayed
to it. As shown in Fig. 1(b), before core1 processes pi, it will
first process f (pi−1), f (pi−2). Since each core misses at most
n−1 packets in round-robin spraying, it can “fast-forward”
its application state to the most updated values using a packet
history with a known, bounded size of at most n− 1. This
solution will always produce correct state and packet-level
outcomes on each core.

There are two key performance concerns. First, piggyback-
ing packet histories of size n (determined by the available par-
allelism across cores or threads) may significantly increase the
bandwidth requirements between the pipeline and each core.
Fortunately, bandwidth within a programmable NIC is plenti-
ful. Second, on the surface, overlapping vector computation
across n packets appears wasteful: each core processes not just
the packet it was sprayed, but also packets that all the cores
were sprayed in the last round. However, packet-processing
is often CPU-bottlenecked by per-packet (not per-byte) work,
where ‘packet’ corresponds to a (physical) packet moved into
and out of the system. Adding redundant computation cor-
responding to the (logical) packet history while moving one
(physical) packet through the system does not significantly
slow down the system.
Implementation and Preliminary Evaluation Result. We
implemented two stateful applications developed in the eBPF
framework, a stateful port-knocking firewall and a heavy hitter
detector, separately using the shared-nothing and the shared-
state (with fine-grained locking) approach. More specifi-
cally, for the heavy hitter application, we implemented two
shared-state versions, one using a spin lock and another using
hardware-optimized transactional memory operations.

To evaluate how throughput scales with cores, we use two
servers on CloudLab to set up a high-speed packet generator
using TRex and a Device Under Test (DUT). Each server
has 10-core Intel Broadwell (E5-2640v4) 2.4 GHz processors
with a PCIe 3.0 bus and 64 GB of memory, and is equipped
with two Mellanox ConnectX-4 25Gbps NICs. We attach each
packet-processing benchmark to the network device driver on
the DUT and use the packet generator to send packets (the
missing packet fields is attached in the packet) to the DUT at
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(a) Firewall using port-knocking
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(b) Heavy hitter detection

Figure 2: Throughput (million packets per second) of two
stateful applications using the shared-state and the shared-
nothing approach. Error bars denote standard deviations.

line rate. The packets will be processed by the benchmark and
forwarded back to the packet generator. We measure the RX
rate (i.e., throughput) on the packet generator. Fig. 2 shows the
throughput results. For both applications, our approach can
reach the line rate with fewer cores used to process packets.
Moreover, the throughput of our approach linearly increases
with cores for both applications.
Ongoing work. We are (1) developing a compiler to automate
the transformation of code written as a single thread to sharing
nothing across cores; and (2) automating the generation of
P4 pipeline code to piggyback application-specific packet
histories on each sprayed packet.
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