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ABSTRACT
We present dRMT (disaggregated Reconfigurable Match-Action
Table), a new architecture for programmable switches. dRMT over-
comes two important restrictions of RMT, the predominant pipeline-
based architecture for programmable switches: (1) table memory
is local to an RMT pipeline stage, implying that memory not used
by one stage cannot be reclaimed by another, and (2) RMT is hard-
wired to always sequentially execute matches followed by actions
as packets traverse pipeline stages. We show that these restrictions
make it difficult to execute programs efficiently on RMT.

dRMT resolves both issues by disaggregating the memory and
compute resources of a programmable switch. Specifically, dRMT
moves table memories out of pipeline stages and into a centralized
pool that is accessible through a crossbar. In addition, dRMT replaces
RMT’s pipeline stages with a cluster of processors that can execute
match and action operations in any order.

We show how to schedule a P4 program on dRMT at compile
time to guarantee deterministic throughput and latency. We also
present a hardware design for dRMT and analyze its feasibility and
chip area. Our results show that dRMT can run programs at line rate
with fewer processors compared to RMT, and avoids performance
cliffs when there are not enough processors to run a program at line
rate. dRMT’s hardware design incurs a modest increase in chip area
relative to RMT, mainly due to the crossbar.
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1 INTRODUCTION
Historically, high-speed packet switching chips have been archi-
tected as a pipeline of match-action stages. For each incoming packet,
each stage (1) extracts specific packet header bits to generate a match
key, then (2) looks up this key in a match-action table, and finally
(3) uses the match result to run an action. For instance, a stage could
extract the packet’s IP destination address, look up this IP address in
a forwarding table, and use the result to determine the outgoing port.
In recent years, programmable switches [2, 7, 14, 16] have emerged,
allowing a switch pipeline’s match-action stages to be programmed
in languages like P4 [15].
RMT. The predominant architecture for programmable switches is
the Reconfigurable Match-Action Table (RMT) architecture [16].
As illustrated in Figure 1a, RMT uses a pipeline of match-action
stages, similar to conventional fixed-function switches. However,
RMT makes the match-action stages programmable; programmers
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(b) Disaggregated RMT (dRMT) Architecture

Figure 1: Comparison of the RMT [16] and dRMT archi-
tectures. dRMT replaces RMT’s pipeline stages with run-to-
completion match-action processors, and separates the memory
clusters from the processors via a crossbar. The dashed arrows
show the flow of a packet through each architecture.

can specify the set of headers to match on, the type of match to
perform (exact, ternary, etc.), and compose their own compound
actions out of primitive actions.

RMT’s pipeline stages contain three kinds of hardware resources:
(1) match units that extract the header bits to form match keys, (2)
table memory in a local memory cluster, and (3) action units that
programmatically modify packet fields. For example, a stage might
have a match unit to extract up to 8 80-bit keys from the packet
header, 11 Mbit of SRAM and 1.25 Mbit of TCAM for tables, and
an action unit to modify up to 32 packet fields in parallel.

By connecting these resources in a sequential pipeline, RMT
simplifies wiring significantly [16]. However, RMT suffers from
two key drawbacks as a result of its pipelined architecture. First,
because each pipeline stage can only access local memory, RMT
must allocate memory for a table in the same stage that extracts its
match key and performs its action. This conflates memory allocation
with match/action processing, which makes table placement chal-
lenging [22] and can result in poor resource utilization (§2.1). For
instance, when a large table does not fit in one stage, it has to be
spread over multiple stages. But, in the process, the match/action

1



units of (all but one of) these stages are wasted, unless there are
other tables that can execute in parallel.

Second, RMT’s hard-wired pipeline can only execute operations
in a fixed order: a match followed by an action in stage 1, then a
match followed by an action in stage 2, and so on. This rigidity can
lead to under-utilization of hardware resources for programs where
matches and actions are imbalanced. For example, a program with
a default action that does not need a preceding match [12], such
as decreasing the packet’s TTL, wastes the match unit and table
memory in the pipeline stage that runs the default action. Moreover,
since packets can only traverse the pipeline sequentially, a program
that does not fit in the available hardware stages must recirculate
packets through the pipeline; this cuts throughput in half, even if the
program needs only one extra processing stage (§2.2).

dRMT. We propose dRMT (disaggregated RMT), a new architecture
for programmable switches that solves both problems confronting
RMT. dRMT’s key insight is to disaggregate the hardware resources
of a programmable switch. As illustrated in Figure 1b, dRMT disag-
gregates:

(1) Memory: dRMT separates the memory for tables from the
processing stages and makes them accessible via a crossbar.
The crossbar carries the search keys and results back and
forth between the match/action units and memories.

(2) Compute: dRMT replaces RMT’s sequentially-wired
pipeline stages with a set of match-action processors. Match-
action processors consist of match and action units, similar to
RMT’s pipeline stages. But, unlike pipeline stages, packets
do not move between dRMT processors. Instead, each packet
is sent to one dRMT processor according to a round-robin
schedule. The packet resides at that processor, which runs the
entire program for that packet to completion.

Memory and compute disaggregation provide significant flexibil-
ity to dRMT. First, memory disaggregation decouples the memory al-
location for a table from the hardware that performs its match-action
processing. Second, compute disaggregation makes it possible to
interleave match/action operations in any order at a processor, both
for a given packet and across different packets. Finally, compute
disaggregation allows for inter-packet concurrency, the ability for
a processor to perform match/action operations on more than one
packet at a time. This flexibility results in increased hardware utiliza-
tion for dRMT relative to RMT, reducing the amount of hardware
(e.g., number of stages/processors) necessary to run a program at
line rate. Equivalently, it increases the set of programs that a fixed
amount of hardware can execute at line rate.

dRMT’s run-to-completion packet processing model has been pre-
viously used in some network processors [4, 10, 11]. However, these
network processors do not guarantee deterministic packet through-
put and latency. Nondeterminism occurs in network processors for
a variety of reasons, including cache misses and contention in the
processor-memory interconnect. In dRMT, we show how to schedule
the entire system (processors and memory) at compile time such
that no contention ever occurs. Given a P4 program, our scheduling
algorithm calculates a static schedule at compile time, guaranteeing
a deterministic throughput and latency (§3).

We evaluate dRMT using four benchmark P4 programs (§4),
three derived from the open-source switch.p4 [13] program and

another proprietary program from a large switching ASIC manu-
facturer. Across these programs, we find that dRMT requires 4.5%,
16%, 41%, and 50% fewer processors than RMT to achieve line-rate
throughput (1 packet per cycle). We also find that dRMT reduces the
number of processors required for line-rate throughput by an aver-
age of 10% (up to 30%) on 100 randomly generated programs with
characteristics similar to switch.p4. Further, dRMT’s throughput de-
grades gracefully with fewer processors, while RMT’s performance
falls off a cliff if the program needs more stages than provided by
the hardware.

We present a hardware design for dRMT (§5) and analyze its
feasibility and chip area cost (§6). dRMT’s flexibility relative to
RMT comes at some additional chip area cost to (1) implement a
crossbar that is absent in RMT, and (2) implement a match-action
processor that stores and executes an entire P4 program, unlike an
RMT stage that only stores and executes a fragment of the P4 pro-
gram. We present architectural optimizations that trade off modest
restrictions for a lower cost. While we have not built a dRMT chip,
our analysis shows that it is possible to implement dRMT with a chip
area comparable to RMT for the same number of processors/stages.
For example, a dRMT chip with 32 processors costs about 5 mm2

more area than RMT with 32 stages, a modest increase relative to
the total chip area of a typical switching chip (>200 mm2) [19].
dRMT’s scalability is limited by the wiring complexity of the cross-
bar. Scaling the crossbar far beyond 32 processors, which already
requires careful manual place and route, may be difficult. Fortu-
nately, switching chips are unlikely to need more than 32 processors
(e.g., a state-of-the-art programmable switch has 12 stages [1]).

The dRMT project page [5] contains the code required to repro-
duce our experimental results. It also contains the latest version of
this extended paper with proofs of all the theorems described in this
paper.

2 THE CASE FOR DISAGGREGATION
2.1 Memory disaggregation
In RMT, each pipeline stage can only access its local memory cluster.
As a result, a table must reside in the memory of the same stage that
extracts its search key and executes its action.1 This leads to a cou-
pling between two problems: (1) choosing which match and action
operations are executed by each stage, and (2) placing the program’s
tables into memory clusters. The first problem involves scheduling
match and action operations across stages such that the program’s
dependencies are not violated (see §3 for details). The second prob-
lem concerns packing the tables into the memory clusters. dRMT
decouples these two problems by enabling all processors to access
all memory clusters via a crossbar. This has several advantages.
Improving hardware utilization. The most important benefit of
memory disaggregation is significantly increased flexibility for map-
ping operations and tables to hardware resources more efficiently.

Example 2.1 (Parallel searches). Consider a program with four
tables whose searches can be done in parallel. If the search keys
for the four tables can be extracted in one RMT stage, but their
1In theory, the action for a table could be deferred to a stage after the lookup. But
this requires passing the results of the lookup between stages along with the packet,
consuming extra space in the packet header vector [16]. RMT compilers [22] typically
avoid deferring actions for this reason.
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total table size exceeds the capacity of one memory cluster, then
some of the tables must be moved to later stages. Similarly, if the
tables fit in one memory cluster, but the key width exceeds the key
extraction capacity of one stage, some tables must be moved to later
stages. In either case, some resources—key extraction hardware or
table memory—are left unused in the first stage. With dRMT, how-
ever, key extraction and table placement are decoupled; a processor
can extract the four search keys and send them over the crossbar
to whichever memory clusters store the tables. (See §5.3 for the
crossbar’s design details.)

Example 2.2 (Large table). A large table may not fit entirely
within one memory cluster and may need to be split across multiple
stages. With RMT, each stage must search its part of the table—
extracting the same key multiple times—and the partial match results
must be combined together. The table’s action cannot be performed
until the last of the stages, potentially wasting the action units in all
but the last stage. In dRMT, the crossbar can multicast the search key
to multiple memory clusters, where the partial searches would be
done simultaneously. With a small amount of result-combining logic
in the return path from the memory clusters back to the processors,
the processor will only receive the highest-priority result.

Independently scaling processing/memory capacity. Memory dis-
aggregation makes it straightforward to select the number of proces-
sors and the number of memory clusters independent of each other,
based on the kinds of programs one wishes to execute. For example,
a designer can trivially add a TCAM memory cluster that is acces-
sible via the crossbar to increase TCAM capacity. By multicasting
search keys, the new TCAM can be allocated to any table that needs
it. By contrast, increasing the memory allocated to an RMT stage
without increasing its match/action capacity risks under-utilizing the
memory.

Simpler compilation. An RMT compiler must place tables across
pipeline stages while respecting the dependencies between program
operations [22]. A dRMT compiler needs to solve two simpler prob-
lems: (1) packing tables into memory clusters, which can be solved
using simple bin packing, and (2) scheduling operations on proces-
sors. An important property of dRMT is that these two problems are
decoupled; tables can be placed in memory clusters irrespective of
how operations are scheduled, and vice-versa. This makes compiling
programs to dRMT conceptually simpler than RMT. We discuss the
dRMT scheduling problem in detail in §3.

The benefits of memory disaggregation are not limited to dRMT.
One could similarly add a crossbar to RMT, connecting all pipeline
stages to all memory clusters, and providing the same benefits. How-
ever, as we discuss next, dRMT takes disaggregation a step further
by getting rid of the pipeline entirely and disaggregating the compute
resources as well. Our results show that compute disaggregation is
essential to achieving the full potential of disaggregation (§4).

2.2 Compute disaggregation
The RMT architecture enforces a rigid match-then-action sequence
of operations in the pipeline. In dRMT, we allow matches and actions
to be interleaved in any order on a processor, as long as dependencies
and resource constraints are respected. This has several benefits.

A0

M1 A1

M2 A2

1

1

1

1
2

A0 A1M1 A2M2

Operation dependency graph RMT pipeline schedule

Stage 1 Stage 2 Stage 3

Figure 2: A toy program and its schedule on an RMT pipeline.

cycle
proc.

0 1 2 3 4 5 6

0 A0 M1 M2 A1&A2

1 A0 M1 M2 A1&A2

0 A0 M1 M2 A1&A2

1 A0 M1 M2 A1&A2

Figure 3: Schedule for toy program on dRMT with 2 processors.

Improving hardware utilization. Compute disaggregation further
increases flexibility to order operations in a way that maximizes
hardware utilization. We demonstrate this advantage using a toy
program whose dependencies are given by the directed acyclic graph
(DAG) in Figure 2. We assume that every edge mandates a minimum
latency of one cycle between the operations on the edge; the numbers
on the nodes represent their (match or action) resource requirements.
We schedule this DAG to run both on RMT and dRMT, assuming
both can perform up to 1 match every clock cycle and 2 actions every
clock cycle in each stage/processor.

In the RMT pipeline, this DAG requires at least 3 stages because
there is insufficient match capacity to run matches M1 and M2 in
parallel, and both M1 and M2 have to follow A0 (Figure 2). The
problem with this schedule is that the match unit in the first stage
is stranded. dRMT can schedule the same program using just 2
processors, as shown in Figure 3. Each row shows the sequence of
operations for one packet, executed on one processor. Notice that
packets are sent to processors in round-robin order: the packet that
arrives in cycle k runs on processor kmod 2. Also notice that the
operations in each processor do not exceed the processor’s capacity
of 1 match and 2 actions per clock cycle.

Eliminating performance cliffs. Packet switching ASICs typically
have a recirculation path, by which packets that do not finish within
a single pass can be sent back to the beginning (mingled with newly
arriving packets). In a pipelined architecture, if a particular program
cannot be scheduled to fit within the available match-action stages,
one may split the program into multiple passes. The packet rate for
a K-pass schedule is 1/K of the system’s maximum rate.

By contrast, with dRMT, throughput degrades gracefully as pro-
gram complexity increases. For example, if a dRMT system can
support M table searches at a rate of 1 packet per clock cycle, it is
possible to support a program that requires M ′ > M table searches
at a rate close to M/M ′ packets per clock cycle. This simply re-
quires increasing the time that packets spend in their processors, and
reducing the rate at which packets are sent to processors.
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3 SCHEDULING FOR DETERMINISTIC
PERFORMANCE

We now describe the dRMT scheduling problem and develop a sched-
uling technique to execute a P4 program efficiently on dRMT hard-
ware while providing deterministic throughput and latency. Specifi-
cally, given a P4 program, we seek a fixed schedule—precomputed
at compile time—that satisfies two constraints: (1) the P4-program-
specific dependencies, and (2) the dRMT architecture’s resource
constraints such as the match and action capacities of each processor.
An important aspect of our formulation is that the same schedule is
repeated across processors in round-robin fashion. This simplifies
the problem significantly, as it greatly reduces the space of schedules
that we must search over. It also gives rise to a unique set of cyclic
constraints that our schedules must satisfy.

We begin by describing the dRMT scheduling problem, and then
introduce our main theoretical results. In particular, we show the
NP-hardness of fixed scheduling for deterministic performance, and
then formulate the problem as an Integer Linear Program (ILP).
Finally, we propose heuristics that can seed the ILP and accelerate
its running time.

3.1 Scheduling problem
First, we present the P4 program dependency constraints and the
dRMT architectural constraints. Then, we introduce the scheduling
optimization problem given these two types of constraints, and also
present an illustrative example after the definitions.

Program dependencies. Each packet entering dRMT follows the
control flow [22] dictated by a P4 program. This control flow speci-
fies how the packet headers are to be processed. To express a pro-
gram’s dependencies, we define an Operation Dependency Graph
(ODG), i.e., a directed acyclic graph (DAG) in which the nodes
represent the match and action operations executed by a packet
while traversing the switch, and the edges describe the dependencies
between these operations.

An edge between two nodes dictates that any valid schedule must
perform the first before the second. The edge is annotated with a
latency that specifies the minimum time separation between the
operations. For an edge from node A to B, this latency is the time
that it takes to complete the operation on node A. We assume that
a table match takes ∆M clock cycles, and an action takes ∆A clock
cycles, meaning that an operation dependent on a match or an action
has to wait ∆M or ∆A cycles respectively.

For operations that are conditionally executed (e.g., based on a
predicate or whether there was a table hit or miss), we conserva-
tively assume that both branches of the condition are executed and
schedule both, even though only one will execute at run-time. This is
equivalent to executing all action nodes within a conditional branch
speculatively, and committing any side effects based on the condi-
tional test afterwards, similar to the speculative execution model
adopted by RMT [16]. This worst-case assumption simplifies the
scheduling problem. In practice, we find that it still allows us to
schedule programs efficiently (§4).

Example 3.1 (P4 program). Figure 4a depicts the control flow of
a simple P4 program that supports unicast and multicast routing (it
is a fragment from the L2L3 program in [22]). Figure 4b depicts the

corresponding ODG. M0, M1, M2 and M3 can be executed concur-
rently. Action A1 must precede A2 because they both write to the
same fields, and A2’s outcome must be the end result.

The ODG is similar to the Table Dependency Graph (TDG) [22],
proposed by Jose et al. to represent P4 program dependencies. But
the ODG is simpler. The TDG annotates edges based on the type
of dependency (e.g., match, action, and reverse-match [22]). By
splitting each table in the TDG into two distinct match and action
nodes (with an edge between them), the ODG lets us represent all
these dependencies in a unified way using appropriate edge latencies.

Architectural constraints. A schedule must respect several dRMT
architectural constraints. We detail these constraints before providing
an illustrative example.
Processors. The dRMT architecture contains N processors. At each
clock cycle, each processor can start the following operations for any
of its packets: launch table matches, launch actions, or do nothing
(no-op). Each table match takes ∆M clock cycles, and each action
takes ∆A clock cycles, meaning that an operation dependent on a
match or an action has to wait ∆M or ∆A cycles respectively. At
each clock cycle, when deciding which operations to launch, the
processor is restricted as follows:

(1) It can initiate up to M̄ parallel table searches of up to b bits
each. For instance, it can look up a match-action table using
a key of size 2.5 · b by sending three parallel vectors of b bits
each, as long as 3 ≤ M̄ .

(2) It can modify up to Ā action fields in parallel.
(3) Finally, it can only start matches for up to IPC (Inter-Packet

Concurrency) different packets, and likewise start actions
for up to IPC different packets. The set of packets that start
matches and the set of packets that start actions need not be
equal.

Memory access constraint. At each clock cycle, a P4 table (and
hence its associated memory clusters) can only be accessed by a
single packet from a single processor.
Crossbar. At each clock cycle, the above constraints mean that each
processor can generate up to M̄ b-bit-width keys for table lookups
that it sends to the memory clusters via a crossbar. The crossbar also
permits multicast.

Fixed scheduling. We restrict ourselves to fixed schedules (i.e., pre-
determined for all types of packets at compile time) given a P4
program and a dRMT architecture. Specifically, we assume that
the arriving packets are assigned to one of the N processors in a
strict round-robin fashion, and that each processor receives a new
packet every P clock cycles. Therefore, the switch throughput is N /P
(e.g., P = N means that a new packet enters the switch every cycle).
Then, we need to find a fixed schedule, i.e., a single cycle-by-cycle
schedule that is pre-determined at compile time and is applied in
the exact same way to all incoming packets. For instance, at line
rate (P = N ), the same operations that are executed by processor 0
at cycle t are also executed by processor 1 at t + 1, by processor 2
at t + 2, and so on, until processor 0 executes the same operations
again at t + P . This schedule is valid whenever it satisfies both the
P4-specific constraints and the dRMT architectural constraints.

Example 3.2 (Valid schedule). We want to find a fixed schedule
with N = 2 processors to support a throughput of 1 (i.e., P = 2)
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Table 1: Unicast Routing

M1: ipv4.dIP

A1: Ethernet.sMac,

Table 0: Routable Ethernet.dMac,
M0: ethernet.sMac, vlan_tag.vlan Table 3: IGMP

ethernet.dMac, M3: ipv4.dIP,

vlan_tag.vlan Table 2: Multicast Routing vlan_tag.vlan,

A0: null M2: ipv4.dIP std_meta.ig_port

A2: std_meta.mcast_idx A3: std_meta.mcast_idx

ucast

mcast

(a) Control flow program (fragment from L2L3 program in [22]). Each
table i has match Mi and action Ai . Note that table 3 does not match on
fields that A2 modifies, so M3 does not depend on M2 or A2. Yet both A2
and A3 modify the same field, and the final value should be that of A3, so
A3 cannot be executed before A2.

M0: Routable

M1: Unicast Routing

A3: IGMPM3: IGMP

A2: Multicast RoutingM2: Multicast Routing

A1: Unicast Routing
2

2

2

2

2

1

(b) Operation Dependency Graph (ODG) for the fragmented L2L3 pro-
gram. Light rectangles represent matches, and dark ones represent ac-
tions. Arrows represent dependencies and are annotated with latencies.
When scheduling the ODG, we assume that both branches dependent on
the unicast vs. multicast condition are executed, similar to RMT’s specu-
lative execution model [16].

cycle
proc.

0 1 2 3 4 5 6 7 8

0 M0&M1 M2&M3 A1&A2 A3

1 M0&M1 M2&M3 A1&A2 A3

0 M0&M1 M2&M3 A1&A2 A3

1 M0&M1 M2&M3 A1&A2 A3

ΔM ΔA

(c) Naive schedule with conflicts. At clock cycle 2, two architectural con-
straints are violated: (1) both the first and the third packet assigned to
processor 0 are scheduled to execute matches although IPC = 1, and
(2) 4 parallel table searches are initiated although M̄ = 2.

cycle
proc.

0 1 2 3 4 5 6 7 8 9

0 M0&M1 no-op M2&M3 A1&A2 A3

1 M0&M1 no-op M2&M3 A1&A2 A3

0 M0&M1 no-op M2&M3 A1&A2 A3

1 M0&M1 no-op M2&M3 A1&A2 A3

(d) Schedule without conflicts. The insertion of a no-op (null) in the sched-
ule slightly increases latency but helps resolve both the architectural con-
flicts.

Figure 4: A simple unicast-multicast packet processing program, its Operation Dependency Graph (ODG), and two potential sched-
ules with and without conflicts. In (c) and (d) each row represents the schedule for a different packet with its allocated processor,
while each column represents a different clock cycle. A match lasts ∆M = 2 clock cycles, and an action ∆A = 1 clock cycle. We assume
that there is no concurrency between different packets in the same processor (IPC = 1) and that at most 2 parallel table searches can
be initiated at each clock cycle by a processor (M̄ = 2).

for the unicast-multicast P4 example described in Example 3.1 and
Figure 4b. For simplicity, assume that each match requires ∆M = 2
cycles and each action ∆A = 1 cycle; that the limit Ā on action
fields is large and can be ignored; that the limit on parallel table
searches is M̄ = 2, with all the keys of size ≤ b bits; and that the
packet concurrency is IPC = 1, i.e., the matches (resp. actions) that
a processor executes in a given cycle are restricted to belong to the
same packet.

Figure 4c first illustrates a naive schedule that violates the ar-
chitectural constraints. The top row tracks time in cycles, and the
following rows represent different incoming packets. The leftmost
column reflects the processor that services this packet, alternating
between processors 0 and 1 in a round-robin manner. To build this
first schedule, we simply follow the ODG in Figure 4b from left
to right and top to bottom, thus arriving at the following possible
sequence of operations:

M0&M1 →M2&M3 →A1&A2 →A3.
Note that the ODG allows all matches to run in parallel; however,
since M̄ = 2, only two of them can run in parallel. Hence, at time 0, a
packet enters processor 0, and M0 and M1 are executed in parallel. At
time 2, after M0 and M1 are finished on this packet, M2 and M3 are
executed concurrently. All packets in all processors follow the same
schedule, hence the entire sequence is simply shifted one column to
the right at each row. Unfortunately, this scheduling sequence is in-
valid because it violates two architectural constraints. First, in clock
cycle 2, processor 0 executes matches corresponding to 2 different
packets (the first and the third), thus exceeding the IPC limit of 1.

Second, in clock cycle 2, processor 0 executes 4 matches while only
M̄ = 2 matches are allowed.

Figure 4d illustrates an alternative schedule without conflicts. The
sequence of operations is:

M0&M1 →no-op →M2&M3 →A1&A2 →A3.
The insertion of the no-op in the schedule slightly increases latency
but helps resolve all conflicts.

Scheduling objective. Given a dRMT architecture with N proces-
sors and a P4 program, our general objective is to maximize the
dRMT throughput. To do so, at compile time, we run an optimization
sub-routine that indicates whether a given throughput is feasible
under the constraints provided by the P4 program dependencies
and the dRMT architecture. We can then use this subroutine in a
binary-search procedure to establish the maximum throughput.

In addition, given any arbitrary dRMT throughput, we want to
minimize the system’s resources required to support this throughput,
and in particular the number of packets that each processor needs to
handle. Let T be the schedule’s fixed packet latency. Then the maxi-
mum concurrent number of packets at each processor is ⌈T /P⌉ (see
proof in appendix). Thus, given N and P , if we minimize latency, we
also minimize the maximum number of packets that each processor
needs to handle. As a result, given some assumed throughput, we
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formally define our scheduling goal as:
Minimize T

subject to:


P4 program dependency constraints
dRMT architectural constraints
dRMT throughput

(1)

3.2 Simplifying dRMT scheduling
Now that we have established the scheduling goal in Equation 1, we
show how it is possible to simplify the dRMT scheduling problem
by successively considering only a single processor, then a single
packet on a single processor.
Single-processor scheduling. We start by showing that to schedule
dRMT, we can focus on scheduling a single processor instead of
jointly scheduling all the processors. Specifically, consider a fixed
schedule for a single processor that respects the program-specific de-
pendency constraints and the M̄ , Ā and IPC architectural constraints
and is applied by all processors in the exact same manner. Then it is
a valid dRMT schedule that respects all the constraints. In particular,
it does not conflict with the other processors when accessing memory
clusters. Formally:

OBSERVATION 1 (CONTENTION-FREE MATCHES). Consider a
single-processor schedule that is applied by all processors. Then
there is no memory contention, i.e., all match requests initiated
by different processors at the same cycle are destined to different
memories.

This observation stems from the fact that all packets arrive at
the switch at different clock cycles, and since the schedule is fixed,
the time offset from packet arrival to memory access is also fixed.
In addition, since the ODG is acyclic, each packet accesses each
memory at most once. Therefore, in any given memory cluster, the
times at which the cluster’s memory is accessed are different for
different packets.
dRMT achieves higher throughput than RMT. An important
corollary of Observation 1 is that the throughput of the dRMT archi-
tecture is guaranteed to be at least the throughput of a corresponding
RMT architecture. Intuitively, consider the sequence of operations
on a packet in an RMT pipe. Then, we can use the same schedule for
each dRMT processor in the same order. Clearly, if a dRMT proces-
sor has the same M̄ and Ā capacity as an RMT stage, such a schedule
will respect the program-specific dependency constraints and the M̄ ,
Ā and IPC architectural constraints, and therefore it results in a valid
schedule for dRMT. Formally:

THEOREM 3.3. The throughput of a program on dRMT is at least
that of RMT.

The full proofs of all the results in this paper are available in the
appendix.
Single-packet scheduling. As mentioned, a fixed schedule applies
the same operations in the same order to all incoming packets, which
periodically arrive at a given processor every P slots. Consider a
packet that arrives at time t . At this time, the processor simultane-
ously executes set of operations 0 for this packet, set P for the packet
that arrived at t − P , set 2P for the packet that arrived at t − 2P , and
so on. These simultaneously-executed sets are precisely the sets of

0:𝑀0&𝑀1
2:𝑀2&𝑀3
4: 𝐴1&𝐴2

1:−
3:−
5: 𝐴3

𝑐𝑦𝑐𝑙𝑒 mod 2 ≡ 0 𝑐𝑦𝑐𝑙𝑒 mod 2 ≡ 1

(a) Naive schedule with conflict
that corresponds to Figure 4c.

𝑐𝑦𝑐𝑙𝑒 mod 2 ≡ 0 𝑐𝑦𝑐𝑙𝑒 mod 2 ≡ 1

0:𝑀0&𝑀1
2: 𝑛𝑜 − 𝑜𝑝
4:−
6: 𝐴3

1:−
3:𝑀2&𝑀3

5: 𝐴1&𝐴2

(b) Schedule without conflicts that
corresponds to Figure 4d.

Figure 5: Illustrating the naive and conflict-free schedules from
Figure 4 using a cyclic single-packet analysis. Each rectangle
shows the operations that are executed simultaneously by a pro-
cessor in steady-state, possibly for different packets.

operations that the first packet itself executes at all cycles that are
equivalent to t modulo P , because the first packet will also execute
the set P of operations at time t + P , the set 2P at t + 2P , and so
on. As a result, instead of analyzing how the different packets share
resources at this processor, analyzing all the operations of a single
packet will suffice.

Example 3.4 (Single-packet scheduling). Consider again the
unicast-multicast example of Figure 4. Figure 5 shows a simpli-
fied analysis that considers only a single packet at a single processor.
Each rectangle represents an equivalence class, i.e., all the operations
that are executed simultaneously in a cycle modulo P . The time slot
at which each operation is executed appears before the operation.
For a schedule that respects the program dependency constraints to
be valid, we only need to make sure that all operations assigned to
an equivalence class respect the M̄ , Ā, and IPC constraints. Figure 5a
illustrates the schedule with conflicts from Figure 4c. The operations
in rectangle cycle mod P ≡ 0 again violate the same two architectural
constraints: there are four match operations where M̄ = 2 and there
are two distinct execution times (0 and 2) for the match operations
where IPC = 1 (detailed in observation 3). Figure 5b illustrates the
conflict-free schedule with the no-op from Figure 4d. It is easy to
verify the validity of the schedule by considering the operations in
each rectangle.

As illustrated in Figure 5, in order to establish a single-packet
schedule that respects the M̄ , Ā and IPC architectural constraints,
we can transform these constraints into cyclic constraints, i.e., con-
straints modulo P on the scheduling sequence of a single packet.
Specifically, we define P equivalence classes that correspond to the
schedule period length and rely on the following observation:

OBSERVATION 2 (CYCLIC PROCESSOR SCHEDULE). Construct-
ing a valid schedule for a single processor corresponds to assigning
each match and action operation in the ODG to an equivalence
class, while ensuring that the requirements of the operations as-
signed to the same equivalence class do not violate the architectural
constraints, i.e., M̄ , Ā, and IPC.

It is straightforward to verify that the M̄ and Ā constraints are
respected by considering all the operations in each of the equivalence
classes. However, to verify that the IPC constraint is respected we
need one additional observation:

OBSERVATION 3 (PACKET CLASSIFICATION). The number of
different packets that a processor initiates matches (actions) for
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in cycle t equals the number of distinct execution times of match
(action) nodes in equivalence class t mod P (i.e., the class of all
nodes with the same remainder when their execution start times are
divided by P).

Using these observations, we formally obtain the following result:

THEOREM 3.5. The single-packet schedule is valid iff the full
dRMT schedule is valid.

3.3 Integer linear program
Before presenting our ILP scheduling solution, we establish the
following scheduling hardness result:

THEOREM 3.6. The dRMT scheduling problem is NP-hard.

Our proof is based on a reduction from the bin-packing problem in
which the bins represent cycles modulo P and the objects of different
volumes represent action (match) operations.

With the intractability result at hand, we observe that all dRMT
architectural constraints are integer valued. Therefore, as long as
the target function is linear as well, we can express this scheduling
problem as an Integer Linear Programming (ILP) problem, which
can be optimally solved using an ILP solver such as Gurobi [6].
ILP formulation. We can restrict ourselves to a cyclic schedule
with modulo constraints, as established in Theorem 3.5. Focus on
a packet π , and consider an ODG node corresponding to operation
v for this packet. We denote by t(v) the time at which operation
v starts. Our goal is to find a cyclic schedule for π that satisfies
all of the constraints and minimizes the maximum t(v) among all
nodes v, i.e., the start time of the last operation. Then, the first set of
constraints is t(v) ≤ T ∀v ∈ ODG where T is the objective function
we want to minimize.

We next provide an overview on how the ILP deals with the
three types of constraints: P4-program dependency constraints (with
∆M and ∆A); resource constraints (with M̄ and Ā); and inter-packet
concurrency constraints (IPC).
Dependency constraints. When solving the scheduling problem,
we must respect the dependencies specified by the edges in the ODG
and their corresponding delay. We can express these constraints as

t(v) − t(u) ≥ τ (u,v) ∀(u,v) ∈ ODG, (2)

where τ (u,v) is the number of cycles that must pass between u
and v (i.e., ∆A or ∆M). Note that we do not demand equality. The
price for this flexibility is the scratch pad that may be needed to
store intermediate results until they are consumed by a successor
node (§5).
Resource constraints. As stated by Observation 2, we seek to par-
tition all the nodes in the ODG among the P equivalence classes
while not violating any resource constraints. To that end, we intro-
duce indicator variables that track the usage of resources by each
class. We define the equivalence class of a node to be the remainder
of this node’s execution time divided by the period length P . Ac-
cordingly, we introduce rq(v,q, r ), which is a binary variable that
respects rq(v,q, r ) = 1 iff t(v) = q · P + r , and is 0 otherwise. It is
easy to see that the indicator variable must satisfy two equalities:∑

q,r
rq(v,q, r ) = 1 ∀v ∈ ODG, (3)

t(v) =
∑
q,r

(q · P + r ) · rq(v,q, r ) ∀v ∈ ODG. (4)

Let VM be the set of all match nodes v in the ODG, and k(v) be the
key size in bits of match node v ∈ VM . Likewise, let VA be the set
of all action nodes v and a(v) be the number of modified fields by
actionv ∈ VA. Now, we can formulate the match and action resource
constraints as ∑

v ∈VM ,q

⌈
k(v)
b

⌉
· rq(v,q, r ) ≤ M̄ ∀r , (5)∑

v ∈VA,q
a(v) · rq(v,q, r ) ≤ Ā ∀r . (6)

IPC constraints. We want to set IPC as an upper limit on the max-
imum number of different packets for which the processors can
generate match keys in the same time slot. To do so, we rely on
Observation 3. Specifically, let (q, r ) correspond to an execution
time t = q · P + r . Then, we need to limit the number of distinct
values q of match operations that belong to the same class (i.e., same
r value). To do so, we introduce an indicator pm(q, r ) for match
operations such that if at least one match operation takes place at
time t = q ·P +r then pm(q, r ) = 1. This can be expressed as follows:∑

v ∈VM
rq(v,q, r ) ≤ pm(q, r ) ·

∑
v ∈VM

1 ∀q, r . (7)

Finally, we can limit the number of different packets for which
matches are initiated at the same cycle:∑

q
pm(q, r ) ≤ IPC ∀r . (8)

Namely, we demand that the number of different q values of matches
that are executed in the same time slot is bounded by IPC without
limiting the number of concurrent matches that belong to the same
packet (i.e., same r value). The IPC action constraints are defined in
an identical manner.

3.4 Accelerating the ILP run-time
We now describe three different techniques that we use in our evalu-
ation to accelerate the ILP run-time.
Topological Random Sieve (TRS). TRS is a heuristic based on the
sieve of Eratosthenes [27]. Namely, we greedily assign the ODG
nodes to equivalence classes in a way that respects (a) the ODG
dependencies and (b) the dRMT architectural constraints. To respect
(a) we consider the nodes in an order dictated by a topological sort
[28] of the ODG. This way, when considering node v, we have
already considered all of v’s predecessors, and obtained a lower
bound for t(v) that is the maximum among all of v’s predecessors’
times summed with their respective delays (i.e., , ∆A or ∆M). Then
we try to find the smallest possible t(v) that respects both this lower
bound and the architectural constraints of equivalence class t mod P .

Considering the nodes in different orders could produce different
solutions. Accordingly, we add randomization to our algorithm such
that by running it multiple times we find better solutions. Specifically,
we use a random topological sort procedure that is based on a DFS
graph traversal. Finally, a typical run-time of TRS takes milliseconds
even on a large ODG.
Sieve Rotator (SR). SR is a two-stage heuristic algorithm: (a) We
first try to find a feasible schedule for an RMT architecture with N
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M-A stages, where at each such stage we have a match unit limit M̄ ,
an action limit Ā and no physical table placement constraints (i.e.,
the illusion of infinite memory size). We also set the delays of the
memory and action operations to ∆M and ∆A respectively. We do so
by using a much simpler ILP program

(see Appendix B). If a feasible solution for that corresponding
RMT architecture has been found, then Theorem 3.3 guarantees that
a feasible fixed schedule for dRMT exists. (b) We again reuse the
sieve idea to translate this RMT solution to a viable schedule for
dRMT. Specifically, we observe that all the matches and actions that
are executed at a given stage by the RMT can also be executed by
dRMT since both switches have identical resource constraints. Then
we just need to assign all the operations executing at a given stage
to a different equivalence class. We do so by considering the stages
in a consecutive order. Since the number of classes is at least as
the the number of processors in dRMT, the sieve procedure always
terminates with a feasible solution. Finally, a typical run-time of SR
takes seconds/minutes for small/large ODG.
Compressed Schedule (CS). CS is a technique that relies on the
following surprising result:

THEOREM 3.7. The dRMT throughput is independent of ∆M and
∆A. Specifically, there exists a feasible schedule with ∆M = ∆A = 1
iff it exists for any strictly positive ∆M and ∆A.

Using this result, given a throughput, we can run the dRMT
ILP with ∆M = ∆A = 1. Since the ILP complexity increases with
the schedule length, this technique results in a significant run-time
acceleration. Alternatively, given a feasible solution with ∆M =

∆A = 1, we can reuse the sieve idea and produce an initial solution
for any ∆M and ∆A.

4 EVALUATION
We use two metrics to compare RMT with dRMT on packet-
processing programs: (1) the minimum number of processors re-
quired to sustain line rate (i.e., one packet per clock cycle), and
(2) the minimum number of threads required to sustain one packet
per clock cycle. A separate thread exists for each packet currently
residing at a dRMT processor, for which some state (e.g., the packet
header vector) needs to be maintained. For a fixed throughput of
one packet per cycle, the number of threads across all processors is
exactly the same as the latency of the program.

First, we compare the two architectures on four real P4 programs,
three derived from an open-source program, switch.p4 [13], and
one proprietary program. Second, because of the paucity of real
P4 programs, we compare the two architectures on 100 randomly-
generated operation dependency graphs (ODGs). Third, we illustrate
how throughput degrades on each architecture as we decrease the
number of processors, showing that dRMT does not have a perfor-
mance cliff, unlike RMT. Fourth, we conclude by reporting on the
run-times of the dRMT ILP.

4.1 Experimental setup
We compare four architectures: RMT, fine-grained RMT, dRMT
with IPC = 1, and dRMT with IPC = 2. Fine-grained RMT allows
matches and actions within a single P4 table to be split and placed in
different RMT stages. It provides greater flexibility than RMT at the

Parameter RMT dRMT
Match capacity (M̄) 8 8
Match unit size (b) 80 bits 80 bits
Action capacity (Ā) 224 32
Match latency (∆M) 18 22
Action latency (∆A) 2 2
Inter-packet concurrency (IPC) 1 1 or 2
Memory disaggregation Yes Yes

Table 1: Parameters for RMT and dRMT.
cost of temporarily holding the action result in the packet header—a
cost we ignore for RMT. We also compare with a lower bound. The
lower bound captures the minimum number of processors needed to
support line rate, if the bottleneck resource (either match or action
capacity) is fully utilized. It also captures the minimum latency for
the program based on its critical path.
Numeric parameters. For both architectures, we assume the num-
ber of memory clusters equals the number of processors/stages. We
list other parameters in Table 1. We chose these parameters based
on the RMT paper and our estimates for match and action latency.
dRMT’s match latency is higher due to the crossbar. dRMT’s ac-
tion capacity is lower to ensure its chip area is competitive with
RMT (we expand on this in §5.1). We do not consider IPC = 2 for
RMT, as this would require sending two packet headers through the
pipeline, effectively doubling the width of the entire datapath across
all stages. In dRMT, by contrast, supporting IPC = 2 only requires
an additional packet buffer and a few muxes in each processor (§6),
resulting in only a modest increase in chip area.
Evaluating RMT’s performance. For both the fine-grained and de-
fault RMT architectures, we formulate an ILP that handles the match
and action capacity constraints described above and dependency con-
straints captured by the operation dependency graphs. Our RMT ILP
is similar to that of Jose et al. [22], but does not consider per-stage
table capacity constraints, in effect simulating an RMT pipeline with
fully disaggregated memory. This implies that dRMT’s actual im-
provements relative to RMT—with local, non-shareable memory in
each stage—will be higher than the numbers reported here. We use
the RMT ILP to calculate the minimum number of pipeline stages S
for RMT that satisfies both the capacity and dependency constraints.
Evaluating dRMT’s performance. For dRMT, we run the ILP de-
scribed in §3, using our heuristics (§3.4) to accelerate the ILP’s
run-time. We use our binary-search procedure described in §3 to cal-
culate the minimum scheduling period P such that a single processor
can receive a packet every P clock cycles.
Metrics. For dRMT, if the minimum scheduling period is P , then
a single processor can receive a packet at most once every P clock
cycles. This implies that at least P processors are required to support
a throughput of one packet per clock cycle. For RMT, assuming each
stage can process a packet every clock cycle, at least S stages are
required to run the program at one packet per clock cycle.

The minimum number of total threads (across all stages) for RMT
is obtained by multiplying the minimum number of stages by the
sum of the RMT match and action latencies. For dRMT, it is output
by the ILP as its optimization objective.
Remark. The ILPs for both RMT and dRMT assume that both
branches of a condition are always speculatively executed (see §3).
Scheduling mutually exclusive operations together (which cannot
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P4 RMT RMT dRMT dRMT Lower
program fine (IPC = 1) (IPC = 2) bound
ingress 18 17 17 15 15
egress 12 11 11 7 7

combined 22 21 21 21 21
proprietary 2.0 2.0 2.0 1.0 1.0

Table 2: Minimum number of processors to achieve line rate
on each architecture. The lower bound for the proprietary pro-
gram is normalized to one for anonymity.

simultaneously execute for any packet) may reduce the number of
processors/stages and threads for both architectures.

4.2 Experimental results
Comparing dRMT with RMT on real P4 programs. Tables 2
and 3 show the minimum number of processors and threads required
to support a throughput of one packet per clock cycle on four P4
programs. Three of them are derived from switch.p4, an open-source
P4 program [13]. They correspond to switch.p4’s ingress pipeline, its
egress pipeline, and a combined ingress+egress program that runs on
a single shared physical pipeline to improve utilization, as suggested
by RMT [16]. The combined switch.p4 program effectively improves
utilization through statistical multiplexing; it creates opportunities to
run a highly utilized stage from one pipeline with an underutilized
stage from the other in the same hardware stage.

We also use a proprietary P4 program from a large switching
ASIC manufacturer. This program has 50% more lines of code
than switch.p4, implements all but a few of switch.p4’s forwarding
features, and some that switch.p4 does not have. For anonymity, we
normalize the critical path for latency and the lower bound on the
number of processors for the proprietary program to one.

The results show that as we progress from RMT towards dRMT
(IPC = 2), the minimum number of processors and threads both
decrease, because more disaggregation enables more flexible sched-
uling. The results also show how an IPC = 2 is important to take
advantage of inter-packet parallelism within the same processor.
Neither an RMT stage nor a dRMT processor with IPC = 1 can ex-
ploit this kind of parallelism. IPC = 2 also reaches the upper bound
on throughput for these programs, showing how a small degree of
inter-packet parallelism is sufficient to extract high throughput.

dRMT’s greatest gains are on programs that cause an imbal-
anced pipeline of match and action operations—and hence wasted
resources. dRMT compacts such programs (e.g., switch.p4’s egress
alone) into a smaller number of processors. When the program al-
ready has a balanced RMT pipeline (e.g., combining the ingress and
egress switch.p4 into one program), dRMT’s gains are lower.

Comparison on random ODGs. To compare dRMT with RMT on
a larger variety of possible P4 programs, we generate random ODGs
based on the characteristics of switch.p4’s ODG. Specifically, we
generate 100 different ODGs that reflect different P4 programs of
varying size. For each ODG, we report the minimum number of
processors/stages required to support the corresponding program at
line rate. We generate the ODGs as follows:

(1) Generate a random directed acyclic graph with 100 nodes. An
edge (i, j) where i < j exists with probability p. p is chosen
so that the total number of edges is 500 on average.

P4 RMT RMT dRMT dRMT Critical
program fine (IPC = 1) (IPC = 2) path
ingress 360 340 245 243 243
egress 240 220 217 198 197

combined 440 420 243 243 243
proprietary 2.82 2.82 1.04 1.01 1.0

Table 3: Minimum number of threads to achieve line rate on
each architecture. The critical path latency numbers are based
on ∆M and ∆A for dRMT and provide a lower bound on the
number of threads necessary. The critical path for the propri-
etary program is normalized to one for anonymity.
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Figure 6: Histogram showing the minimum number of proces-
sors for dRMT and RMT on 100 random ODGs.

(2) Then, the nodes are visited according to a topological sort.
Each non-leaf node is randomly chosen to be either a default
action with probability 0.15; or a conditional node, i.e., a
single-field action node representing a predicate, with proba-
bility 0.25; or split into a match node followed by an action
node with probability 0.6. Likewise, each leaf node is either
a default action with probability 0.15, or split into a match
node followed by an action node with probability 0.85.

(3) For a non-conditional action node, the number of fields is first
sampled from a geometric distribution with a mean of 4 fields
and then truncated to the interval [1, 32].

(4) For a match node, the key width is first sampled from a geo-
metric distribution with a mean of 106 bits and then truncated
to the interval [80, 640].

All the parameters above, i.e., number of edges, probabilities for
node types, and parameters for the truncated geometric distribution
are chosen based on distributions observed in switch.p4. We choose
a geometric distribution to capture our empirical observation from
switch.p4 that higher key widths or action fields are less likely.

Figure 6 illustrates the results. As expected, dRMT with IPC = 2
provides more flexibility and results in the lowest number of required
processors. dRMT with IPC = 1 follows and shows a consistent
advantage over RMT. Across all 100 randomly generated graphs,
dRMT with IPC = 2 had an average reduction of 10% in the number
of processors relative to RMT and a maximum of 30%.

dRMT eliminates performance cliffs. Once we determine both
S and P , which respectively enable RMT and dRMT to enable a
throughput of one packet per clock cycle, we can calculate the
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Figure 7: Throughput on switch.p4’s egress pipeline. dRMT’s
performance scales linearly with processors and achieves the
lower bound, while RMT displays performance cliffs.

throughput th(N ) as a function of the number of processors N . 2

thRMT (N ) = min(1, 1/(⌈S/N ⌉)) (9)

thdRMT (N ) = min(1,N /P) (10)

The throughputs are capped at one because it is challenging to build
on-chip memories to support two or more reads/writes per clock
cycle—and hence two or more packets in a cycle.

Figure 7 illustrates the effect of decreasing the number of pro-
cessors on the throughput. It plots th(N ) for each architecture using
switch.p4’s egress pipeline. The figure illustrates the performance
cliff for both RMT variants and the linear degradation in throughput
for dRMT. The results for switch.p4 ingress and combined are not
shown, but are similar. For example, for the ingress program, RMT’s
throughput drops to 50% as the number of processors decreases to
17 from 18.
dRMT ILP run-time evaluation. We measure the time taken by
the dRMT ILP as a function of the number of processors N , while
targeting a fixed throughput of one packet per clock cycle, using the
three open-source switch.p4 programs. We carried out our measure-
ments on an HP ProLiant DL785G5 machine with 8 AMD quad-core
processors (2.2 GHz), each with a shared 2 MB L3 cache, and 256
GB DDR2 RAM at 533 MHz.

Figure 8 depicts the results for dRMT with IPC = 1. The ILP
run-time drops quickly (by two to three orders of magnitude) as
soon as the number of processors is slightly larger than the minimum
number necessary to run the program at one packet per clock cycle.
The reason is that the ILP is much easier to solve when there is a
little bit of slack. We do not show dRMT with IPC = 2 because the
run-times with IPC = 2 never exceeded a few minutes regardless
of the number of processors. This is because IPC = 2 makes the
scheduling problem easier by providing more flexibility.
The value of the acceleration techniques. Our first and lightest
technique, TRS, excels in providing near-optimal solutions in sec-
onds when the hardware utilization is low. For moderate utilization,
by allowing TRS to run for a fixed time we are able to accelerate the
binary-search procedure by establishing feasibility quickly. Alterna-
tively, we can feed the ILP with an initial solution when minimizing

2We assume the ability to recirculate packets back into the pipeline in RMT while
reducing throughput by a factor of the number of recirculations.
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Figure 8: ILP run-time in dRMT (IPC = 1) as a function of the
number of processors for a throughput of one packet per clock
cycle. The dashed lines show the minimum number of proces-
sors required to run at one packet per clock cycle. The non-
monotonicity is an artifact of the ILP’s discrete-valued nature.

hardware resources for a given throughput. For example, in the
switch.P4 ingress example with IPC = 2 and N = 20 processors,
the ILP completed in 5 seconds when fed with an initial solution
provided by a 30-second run of TRS; an identical run of the ILP
without an initial solution took 404 seconds.

We use our second technique, SR, to both establish feasibility
during the binary search procedure and to provide initial solutions
for the dRMT ILP. SR works as long as the corresponding RMT
architecture can support the same throughput as well (Theorem 3.3).
For example, in the switch.P4 ingress example with IPC = 1 and
N = 20 processors (instead of the minimal number of 17), the ILP
finished its run in 15 seconds with an initial solution provided by SR
in 11 seconds; an identical run without an initial solution took 515
seconds.

Finally, while both TRS and SR significantly improve the ILP run-
time for many problem instances, they cannot always help. Specifi-
cally, this happens when either the hardware utilization is too high
and randomization in TRS cannot help or when the corresponding
RMT architecture cannot support the desired throughput anymore
and thus cannot be used as part of the SR heuristic. For such par-
ticularly challenging scenarios we rely on CS. Specifically, in the
switch.P4 combined example with IPC = 1 and N = 21 processors,
CS established feasibility in 22 minutes while the original ILP took
14 hours to establish feasibility.

5 HARDWARE ARCHITECTURE
The dRMT architecture consists of a set of match-action processors,
connected to a set of memory clusters through a crossbar. Each
match-action processor contains processing elements to (1) generate
match keys for matches and (2) update packet fields for actions.
While the overall architecture of dRMT is different from RMT, the
processing elements for matches and actions are similar. Hence, we
adopt the design of these processing elements as is from RMT.

The key difference between RMT and dRMT is that dRMT runs
a packet to completion once it is assigned to a processor, instead
of moving it from stage to stage. While run-to-completion provides
dRMT with more flexibility (§4), it also requires each processor to
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Figure 9: The design of a dRMT processor.

store the entire program. This is in contrast to RMT, where each
pipeline stage only stores the fragment of the program that is ex-
ecuted within that pipeline stage. As a result, dRMT’s hardware
design requires some optimization to avoid additional cost in digital
logic—and therefore silicon area and power. This section focuses
on the optimizations within the individual match-action processors
(§5.1), the memory clusters (§5.2), and the shared crossbar (§5.3)
connecting processors to clusters.

We mention many constants in this section, such as the number
of bits in the packet vector, the number of search key bits that can
be issued by a processor every clock cycle, etc. Unless otherwise
stated, we choose these design parameters to be the same as the pub-
lished RMT architecture [16]. This enables a more straightforward
comparison between our work and theirs.

5.1 Match-action processors
Each match-action processor admits one packet every P clock cycles,
where P is the scheduling period. If the maximum program latency
isT clock cycles, each processor must receive and process up tom =
⌈T /P⌉ packets in parallel. Hence, the processor uses an m-threaded
design to store packets awaiting service, each thread corresponding
to a different packet. This is similar to hardware multithreading in
general purpose CPU cores and GPUs [24], with the same purpose:
to achieve high utilization of the processor in the face of high latency
operations (e.g., L1 cache misses for general purpose CPUs, table
matches for dRMT).

Figure 9 shows the processor’s architecture. We list its compo-
nents below.

(1) Packet header vectors to store packet headers and metadata,
i.e., data about the packet that was derived from the packet
and/or table lookup contents, but is not part of the packet
itself.

(2) Match table key generation logic to generate match keys for
table lookups.

(3) Action Arithmetic Logic Units (ALUs) that allow multiple
packet fields to be modified in parallel every clock cycle.

(4) A Very Large Instruction Word (VLIW) [16] instruction mem-
ory that specifies the configuration (opcode and operands) for
each action ALU on every clock cycle.

(5) An action input crossbar to select inputs for each ALU.
(6) An action output crossbar to route ALU outputs to the packet

header vectors after modification.

(7) A scratch pad to temporarily store associated data returned as
a result of a table match (which we term action data segment),
if it is only going to be used in a later clock cycle.

(8) A thread scheduling configuration table to help select the
thread for match and action operations in every clock cycle.
Selecting multiple threads provides opportunities for inter-
packet concurrency, as discussed earlier.

Match key generation. Based on RMT, we use a 4-kbit packet
header vector, structured as 64 8-bit fields, 96 16-bit fields, and 64
32-bit fields, for a total of 224 fields. From this vector, we extract
fields to send up to 640 bits of match search key to the crossbar. This
is structured as eight 80-bit key segments, e.g., it can consist of one
320-bit key spanning 4 segments, and two 160-bit keys spanning
2 segments each. We do not find the need to form separate 640-bit
keys for the hash tables and TCAMs and find that we can generally
fit both the hash table and TCAM keys generated from a processor
into 640 bits.

In RMT, the match keys are generated by a 4-kbit-to-640-bit
crossbar that takes in the packet header vector as input and outputs
up to eight search keys. Each match-action stage needs only one
configuration setting for the crossbar, stored in that stage in flip-
flops. Different stages have independent configurations so each can
generate different search keys depending on what is being looked up
in each stage.

On the contrary, dRMT is a run-to-completion architecture, so
each processor must be able to generate different search keys in
each of the P clock cycles of its repeating schedule. To reduce chip
area, instead of storing an identical set of P search-key crossbar
configuration settings in each processor, we store one copy of the
complete configuration in a P-entry table in a central chip location,
and then distribute the configuration to each processor just in time
for key generation, via a two-level distribution tree.

Recall that dRMT can schedule match/action operations from
multiple threads in the same clock cycle (IPC > 1; see §3). The only
restriction is that the combined search keys from all the threads fit
into the 640-bit search key.

ALUs. The goal of each arithmetic and logic unit (ALU) is to per-
form one operation per clock cycle on one or two packet header
fields, such as arithmetic on two 32-bit numbers, left or right shifts,
comparisons, or logic operations. Both in RMT and dRMT, ALUs
themselves are relatively cheap to implement, but can require ex-
pensive logic around them to get operands and outputs into and
out of the ALUs. For instance, both in RMT and dRMT, the cross-
bar logic required to extract ALU inputs/operands from the 4-kbit
packet header vector and the 768-bit action data segments (i.e., the
match results from up to eight tables, each of which is 96 bits) is
considerable.

In addition, while in RMT, each stage only needs instruction
memory for the program fragment that is resident on that stage,
in dRMT, each processor needs to store the entire program. This
requires us to reduce the number of ALUs in the dRMT design,
because a larger number of ALUs increases the width of the VLIW
instruction. RMT uses 224 ALUs within its VLIW instruction, one
for each of the 224 fields in the 4-kbit packet header vector. Based
on our analysis of switch.p4 [13], we find that 32 parallel ALUs
are sufficient. Figure 10 illustrates this analysis of switch.p4. We
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Figure 10: Primitive actions required for switch.p4 tables.

note that over 90% of the tables require eight or fewer primitive
actions [12] to be performed for their largest compound action, and
over 90% of the primitive actions used can be performed with a
single ALU. Analysis of a proprietary P4 program gives similar
results.

The RMT designers justify their choice of an ALU for every
field by noting: “Allowing each logical stage to rewrite every field
may seem like overkill, but it is useful when shifting headers... A
logical MPLS stage may pop an MPLS header, shifting subsequent
MPLS headers forward” [16]. For the particular use case mentioned,
an array of 6 MPLS headers in P4 requires only 6 32-bit ALUs
to implement a push or pop operation. Larger header arrays are
uncommon in networking protocols. If such cases are encountered in
a P4 program that cannot be handled with a single VLIW instruction
for 32 ALUs, dRMT with 32 ALUs can perform it in multiple cycles.

dRMT’s ALUs use 32-bit inputs and outputs and are functionally
identical to the ALUs on 32-bit fields in the RMT chip. With 32 such
ALUs, we can modify up to 1 kbit in the packet vector in one clock
cycle. Because we only have 32 ALUs, we implement a 32 × 224
crossbar to write back the ALU outputs to 32 out of 224 locations
in the packet header vector. This output crossbar does not exist in
RMT because each of the 224 fields has one ALU hard-wired to it.

Recall that up to eight matches may execute every clock cycle,
so we can have up to eight distinct actions executing every clock
cycle. In aggregate, these eight actions can use up to 32 ALUs.
The compiler ensures that the eight actions are implemented using
disjoint sets of ALUs in order to avoid resource conflict. Thus,
each of the 32 ALUs is assigned to one of the eight actions every
clock cycle; this action configures that ALU with an operand and an
opcode during that cycle.
VLIW instruction memory. The VLIW instruction memory is used
to configure each of the 32 ALUs within a dRMT processor by
supplying it with opcodes and operands every clock cycle. We im-
plement the instruction memory as 32 per-ALU SRAM slices (Fig-
ure 11). Each slice can hold up to 1K entries; each entry corresponds
to the configuration of that ALU for one of 1K different actions. We
chose the number 1K to provide the same number of actions allowed
by RMT (32 stages * 32 user-defined actions per stage). Each entry
within the slice stores the opcode for the ALU along with the address
of the operand. The operand can be one of the 224 packet fields, one
of the eight 96-bit action data segments (e.g., the value of the next
hop for an action that sets the next hop) returned as a result of the
table lookup, a constant, or data from the scratchpad.

Which of the 1K entries within a slice configures an ALU on every
cycle? Each table lookup, in addition to returning a data segment,

1K 
slice

(for ALU 0)

1K 
slice 

(for ALU 31)

Action 
Program
Counter

Bits[95:93]

Instruction Ptr 0 (10b)

…
 … 8:1 

mux

Instruction Ptr 7 (10b)

Instruction Ptr 0 (10b)
…

 … 8:1 
mux

Instruction Ptr 7 (10b)

…Bits[2:0]

32 X 96b
ALU Select 

Table

Figure 11: VLIW instruction memory.

also returns a 10-bit instruction pointer that represents one of the 1K
different actions. These instruction pointers returned from a table
lookup address the per-ALU slices during that cycle. To determine
which of the 32 per-ALU slices a particular instruction pointer should
address on a particular clock cycle, we use a 32 × 96b configuration
table. This table is indexed by a 5-bit program counter and hence has
32 entries. Each entry in the table consists of 32 3-bit select fields,
one for each ALU. The entry indicates which of the eight actions
(and hence which of the 8 10-bit instruction pointers) executing in
that cycle are assigned to each of the 32 ALUs for that cycle.

The VLIW instruction memory cannot be replaced by a central-
ized distribution tree like the match configuration. This is because
the VLIW ALUs’ opcodes need to be determined at run-time and
potentially could be different for every packet, depending on the
instruction pointer returned by the match-action table lookup for
that packet. On the other hand, the match crossbar configuration can
be determined at compile time and simply needs to be sent to each
processor just before the processor needs it.

Scratch pad. If the program only consists of a fixed pattern of
consecutive match-immediately-followed-by-action elements, the
action data segments are consumed as they are returned. However,
in dRMT there are additional challenges:

• The program scheduler may decide to delay an action using
no-ops to assign the clock cycle to another packet;

• The scheduler may decide to interleave matches and actions,
e.g., M1M2 · · ·A1A2, where Mi corresponds to matches and
Ai to actions;

• The scheduler may even merge actions following multi-
ple match operations to reduce latency, e.g., M1M2 · · ·A1+2,
where A1+2 corresponds to a merged action that runs both
actions A1 and A2 in parallel.

While this flexibility improves the scheduling outcome, it requires
temporary storage for the results of match operations that are re-
turned from the memory clusters back to the processors, since these
results are not always immediately consumed.3 We implement a

3The results of actions are always written back into the packet header vector, and
therefore do not need temporary storage.
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scratch pad for this purpose. The width of the scratch pad is 96 bits
(the width of the action data segment) and it can store up to 64 en-
tries, which we found to be adequate for programs we evaluated. The
scratch pad has eight write ports and eight read ports. This allows
the processor to write data from eight action results in parallel and
later read up to eight action data segments in parallel.

A deeper scratch pad leaves more flexibility for the scheduler
to postpone actions, but adds to the hardware cost. If the compiler
is given a program where this number of scratch-pad entries is
insufficient, the scheduler can rearrange the sequence of matches
and actions to reduce the temporary storage required. This can be
achieved by, for example, restricting the allowed number of inter-
leaved match-then-action operations (e.g., by changing Equation (2)
to an equality instead of an inequality for some dependency con-
straints, thus leaving less slack), possibly at the expense of a higher
program latency, and even lower throughput if a feasible schedule
with these new restrictions cannot be found anymore. We leave this
refinement to our ILP formulation (§3.3) to future work.

5.2 Memory cluster
A dRMT memory cluster is organized like the memory within a
single RMT stage. Each memory cluster has a set of memory blocks
that can be grouped together to form wider or deeper logical tables.
The parameters for memory blocks are identical to RMT [16]. The
number of processors is typically equal to the number of memory
clusters, but the architecture allows these numbers to differ (§2.1).

5.3 Crossbar
The crossbar connects processors to memory clusters. Every clock
cycle, a processor can produce up to M̄ = 8 key segments of b =
80 bits, and expect eight 10-bit instruction pointers plus eight 96-
bit action data segments from the memory clusters. The crossbar
configuration is statically programmed during compilation, based on
the result of the scheduling algorithm.

Crossbar types. When designing the dRMT architecture, we con-
sidered various crossbar types and their tradeoffs (Figure 12).

(1) Unit Crossbar: One-to-one connectivity between a processor
and a memory cluster.

(2) Segment Crossbar: One-to-one connectivity between a key
(or action data) segment at the kth index on a processor and a
segment at the kth index on a memory cluster. This is equiva-
lent to k parallel unit crossbars, one for each segment.

Unit Segment Full
Crossbar Crossbar Crossbar

One-to-One 0.544 0.561 4.448
One-to-Many 0.561 0.576 4.464

Table 4: 32x32 crossbar synthesis gate-only area (mm2).

(3) Full Crossbar: One-to-one connectivity between any segment
on a processor and any segment on a memory cluster. This
gives us complete flexibility in terms of table allocation on
memory clusters.

In addition, for each of the above-mentioned types, we considered
one-to-many multicast crossbars. A one-to-many crossbar enables
the processor to access multiple memory clusters at once without
incurring extra latency. This allows large tables to be spread across
multiple clusters, and still be accessed in a single match operation.

While the segment crossbar seems to be more constrained than
the full crossbar, we can prove the following powerful result:

THEOREM 5.1. The segment crossbar is equivalent to a full
crossbar if: (1) no match tables are split across memory clusters
and (2) each processor sends, and respectively each memory cluster
receives, at most M̄ key segments.

While we can construct examples to show that the two crossbars
are not equivalent when we have a table split across memory clus-
ters, the theorem indicates that for most practical cases, there is no
difference between them. We picked the multicast segment crossbar
because it comes quite close to the full crossbar in expressiveness,
while consuming much lesser area and power. Table 4 details the
synthesis numbers for gate area without wiring (Table 6 has the area
for a segment crossbar including wires; including wiring, the area
ratios between the different crossbars should stay about the same.).

6 HARDWARE COST
We now evaluate the cost of dRMT’s hardware implementation and
compare it to the RMT design. Currently, the most mainstream
process technology for this type of high-performance chip is 16
nm. As mentioned before, we do not have an implementation of
dRMT. In order to obtain silicon area estimates, we coded sample
logic and synthesized it with the Synopsys Design Compiler for a
1.2 GHz clock cycle target. We demonstrate that the chip area and
power differences between the dRMT and RMT chip are small. Our
calculations are for the processor portions of RMT and dRMT only,
and we do not discuss the chip design elements that are common
to both, such as memory clusters, SerDes, Ethernet MAC logic and
packet buffer memory. Discussion of the relationship of chip area
and cost can be found in chapter 1 of [24]. Table 5 summarizes the
area of the major components within the processor.

We synthesized a design for dRMT ALUs with an area close to
the one reported in the table. Since we do not know the complete set
of ALU operations used by the RMT architecture, our reported area
for RMT is based on RMT’s estimate [16] that ALUs take up 7%
of the entire chip for a 32-stage pipeline with 224 ALUs per stage.
We estimate an area of 200 mm2 for RMT’s entire chip based on
the lower limit from Gibb et al. [19], and then scale the area down
from a 28 nm to a 16 nm process (We must make some assumptions
here in order to compare our areas to theirs, because RMT does not
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dRMT dRMT
Component RMT (IPC = 1) (IPC = 2)
Key Generation
Match key config. register 0.007 0.004 0.005
Match key xbar 0.098 0.049 0.071
Packet Storage
Packet header vectors 0.110 0.326 0.470
Scratch pad N/A 0.051 0.051
Actions
Action input selector 0.486 0.171 0.315
ALUs 0.170 0.071 0.071
Action output selector N/A 0.048 0.048
VLIW instruction table 0.372 0.336 0.336
Total 1.243 1.056 1.367

Table 5: Area per processor (mm2).

Crossbar dRMT dRMT
with 32 (IPC = 1) (IPC = 2)

Number of memory plus plus
processors RMT clusters crossbar crossbar
16 19.9 0.857 17.7 22.7
24 29.9 1.254 26.6 34.1
32 39.8 1.740 35.5 45.5

Table 6: Area for all processors plus interconnect (mm2).

report absolute area numbers for its ALUs.). We estimate 42% of
the area of RMT’s 224 ALUs. This is more than the fraction of total
ALUs involved (i.e., 32

224 ) to account for the larger size of dRMT’s
32-bit ALUs relative to RMT’s 8-bit and 16-bit ALUs.

The packet header vectors in RMT are a simple shift register of
20 packet vectors per stage, to cover 18 cycles of match latency plus
2 cycles of action latency. Instead, in dRMT, the match latency is
22 cycles to cover the additional 4 clock cycles of match latency
needed to traverse the crossbar. In addition, in our scheduling ex-
periments with P4 programs, we saw several instances that required
up to 29 packets (i.e., threads) per processor to accommodate the
schedule because of no-ops. This is higher than RMT because we
achieved a higher utilization of the processor resources. Therefore,
we assume up to 32 threads per processor in our dRMT architecture,
corresponding to 32 packet vectors per processor.

The dRMT packet header vectors cost more area per bit of storage
primarily due to the additional read and write ports required. For
IPC = 2, we need to read 2 different vectors per clock cycle to
construct match keys, plus 2 more to perform actions on them, and
write back modified vectors for another 2 packets. This totals 4 read
ports and 2 write ports.

Table 6 presents the total area for multiple processors. It also gives
the area for a multicast segment crossbar (§5.3) that interconnects
the processors and memory clusters, sized for the given number of
processors and 32 memory clusters. We found that about a third of
the area is used by gates (Table 4) and two-thirds by wiring.

We have existing commercial designs containing similar cross-
bars of up to 16 processors and 16 memory clusters with similar
utilization of 33%. We have carefully analyzed techniques such as
manually routing crossbar wiring over SRAMs in the memory clus-
ters that should allow us to scale to larger 32 × 32 crossbars (details
are in our extended version [5]).

Number of Power for crossbar
processors with 32 memory clusters
16 0.88 W
24 1.31 W
32 1.75 W

Table 7: Crossbar power.

Table 7 estimates the crossbar’s power. This was obtained using
Synopsys PrimeTime in the same 16 nm technology, 1.2 GHz clock
frequency, 0.9 volts, and 50% switching factor, i.e., the worst case
of all data bits changing values every clock cycle. To put our area
and power numbers in context, commercial switch ASICs occupy
between 300 and 700 mm2, and consume between 150 and 350 W.

7 RELATED WORK
dRMT’s design is similar to network processing units (NPU) [4, 8–
11, 23, 25] and multi-core software routers [17], which feature an
array of processor cores with shared memory. Like both CPU and
NPU cores, each dRMT core has local instruction memory and a
scratchpad for data. However, NPUs lack deterministic guarantees
on performance and have historically been slower than line-rate
switches. An NPU’s non-determinism arises from multiple factors:
cache misses, contention within the processor-memory interconnect,
pipeline flushes in each core, etc. dRMT’s custom-designed crossbar
is scheduled at compile time to eliminate all contention—and hence
non-determinism. Further, by basing dRMT’s VLIW instruction set
on RMT, dRMT exploits the parallelism available within packet
processing more effectively than NPUs, which suffer a performance
hit because their instruction sets resemble conventional CPUs.

Cavium’s XPliant [3, 14] and Barefoot’s Tofino [2] are two com-
mercial products that support programmability at multi-Tbit/s speeds.
Based on publicly available documents [2, 14], it appears both use a
pipelined approach similar to RMT. It is unclear from these sources
whether they use a crossbar between the pipeline and table mem-
ories. If so, the crossbar would introduce a similar additional area
and power cost as we have analyzed for dRMT, while providing
memory disaggregation alone, e.g., better utilization of the pipeline’s
processing resources in the presence of large tables. However, both
the Xpliant and Tofino architectures would still suffer a performance
cliff if a single pass through the pipeline was insufficient.

Prior work [22] has looked at compiling P4 programs to the RMT
architecture using an ILP formulation. This ILP formulation needs
to handle the memory allocation problem for logical P4 tables while
respecting dependencies between these tables. dRMT decouples
the memory allocation problem from compute scheduling using
the crossbar, essentially reducing the compilation problem to two
separate ILPs for memory allocation and compute scheduling.

The problem of cyclic scheduling has been studied in the opera-
tions research community [18, 20, 21]. In a cyclic scheduling prob-
lem, a set of tasks needs to be executed an infinite number of times,
while still respecting task dependencies and resource constraints.
The objective in cyclic scheduling is to maximize the steady-state
throughput, i.e., how frequently an instance of the same task can be
executed. Our problem setting is similar, the tasks corresponding to
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match or action operations. Our formulation differs from the stan-
dard cyclic scheduling problem by incorporating a constraint unique
to packet processing: we limit the number of packets that can be
processed concurrently using the IPC parameter.

8 CONCLUSION
This paper presented dRMT, a new architecture for high-speed pro-
grammable switching. At the core of dRMT is disaggregation in
two forms: in memory disaggregation, we move memories out of
processors and into a shared memory pool, while in compute disag-
gregation, we allow each processor to execute matches and actions
in any order respecting program dependencies. Our discussion of
disaggregation has been grounded in the context of dRMT, but it is
more broadly applicable. For instance, retaining the RMT pipeline
but adding a shared memory pool improves RMT’s memory uti-
lization. Similarly, disaggregating the matches and actions within
a single RMT table and putting them in different stages (as in the
RMT-fine architecture) reduces RMT’s stage count.
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A THEOREM PROOFS
A.1 Notations and definitions
Single-packet schedule. Let t(v) be the relative execution time of
operation v. Namely, t(v) is equal to the number of clock cycles that
pass from a packet being admitted to the switch until the execution
time of operation v on this packet for all v in ODG. Specifically,
t(v) = k means that if a packet π0 is admitted to the switch at time
τ0 then it undergoes operation v at time τ0 + k. We refer to the set
{(v, t(v)) ∀v ∈ ODG} as the single-packet schedule.
Equivalence classes. Given a single-packet schedule we define
the equivalence class of a node v ∈ ODG as t(v)mod P . Namely,
the equivalence class of each node is unique and a member of
{0, 1, . . . , P−1}.
Modulo constraints. Consider a single-packet schedule. Then, the
modulo constraints are given by:
• Match: All the match nodes in ODG with identical equivalence

class require no more than M̄ b-bits-width match units when
executed simultaneously.

• Action: All the action nodes in ODG with identical equivalence
class require updating no more than Ā action fields when executed
simultaneously.

• IPC: All match (action) nodes in ODG with identical equivalence
class have no more than IPC distinct relative execution times.

• Dependency: Let VM (VA) be the set of all match (action) nodes
in ODG. Then, for all edges (u,v) in ODG it holds that:
– if u ∈ VM then t(v) − t(u) ≥ ∆M.
– if u ∈ VA then t(v) − t(u) ≥ ∆A.

A.2 Maximum number of packets
PROPOSITION A.1. Let T be the fixed schedule length. Assume

that a processor receives a new packet every P clock cycles. Then the
maximum concurrent number of packets at each processor is ⌈T /P⌉.

PROOF. Assume by way of contradiction that at clock cycle τ the
number of packets at a processor grew to ⌈T /P⌉ + 1 for the first time.
Since a new packet is assigned to this processor every P clock cycles,
the oldest packet π at that processor must have arrived at clock cycle
τ − P · ⌈T /P⌉. This means that at clock cycle τ packet’s π residence
time at the processor is P · ⌈T /P⌉ + 1 > T . Now, since the schedule
length is exactly T , packet π must have left the processor by the end
of clock cycle τ − 1, leading to a contradiction. □

A.3 Proof of Theorem 3.3
PROOF. Consider an RMT switch and a corresponding dRMT

switch that has the same number of processors as RMT stages,
with each processor/stage having the same match/action capability.
Formally:
RMT. Assume an RMT architecture with N M-A stages such that
each M sub-stage has M̄ b-bits-width memory units and each A sub-
stage can update up to Ā action fields.
dRMT. Assume a dRMT switch with N processors where each
processor has M̄ b-bits-width memory units that connect it via a
crossbar to the memories and at each clock cycle it can update up to
Ā action fields.

Assume that a given P4 program is executed by the RMT switch
at line-rate. We next produce a schedule for the dRMT switch that
supports line-rate as well for the same given P4 program. Specifically,
we find a single-packet schedule for the dRMT, which is sufficient
as we later prove in Theorem 3.5 (note that Theorem 3.5 does not
depend on Theorem 3.3).

Let M∗
i (A∗

i ) be the set of match (action) operations that are
executed at the i’th stage of the RMT. We begin by observing that
M∗
i (A∗

i ) can be fully executed by a dRMT processor in a single clock
cycle since it shares the resource limitations of an RMT stage. Our
construction of the single-packet schedule follows three guidelines:
• Bundle execution. All operations in M∗

i (A∗
i ) are assigned the

same relative execution time denoted by t(M∗
i )

(
t(A∗

i )
)
.

• Dependency constraints.
– t(A∗

i−1) + ∆A ≤ t(M∗
i ).

– t(M∗
i ) + ∆M ≤ t(A∗

i ).
• Equivalence classes. To support line-rate, each processor in

dRMT can receive a new packet every N clock cycles, thus P=N .
Accordingly, we assign each of the P M∗

i ’s (A∗
i ’s) to a distinct

equivalence class in {0, 1, . . . , P−1}.
We construct the single-packet schedule using a sieve-based proce-
dure. Specifically, we consider the RMT stages in consecutive order
and greedily assign each match (action) sub-stage with a relative
execution time that corresponds to a previously unoccupied (i.e., dis-
tinct) equivalence class. Note that we do not optimize for latency but
only seek feasibility. Finally, this single-packet schedule is obtained
by the following procedure:

% Assign first M-A stage

1. t(M∗
0 ) = 0, t(A∗

0) = ∆M
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% Update occupied Match (TM) and

% Action (TA) equivalence classes

2. TM = {0}, TA = {∆Mmod P}

% Loop over unassigned stages

3. For i in [1,2,...,P-1] do:

% Assign time to matches

4. f (t) = t(A∗
i−1) + ∆A + t

5. t(M∗
i ) = min

t
{ f (t) | f (t)mod P < TM}

6. TM = TM ∪ {t(M∗
i )mod P}

% Assign time to actions

7. д(t) = t(M∗
i ) + ∆M + t

8. t(A∗
i ) = min

t
{д(t) | д(t)mod P < TA}

9. TA = TA ∪ {t(A∗
i )mod P}

Since for both matches and actions we have P equivalence classes
to which we assign N=P sub-stages, according to the pigeonhole
principle, this procedure terminates with finite relative execution
times for all operations.

Note that we have assumed that the RMT supports line-rate. How-
ever the proof holds for any P4 program that may require a K-pass
schedule. In this case the RMT throughput is 1/K where each packet
undergoes K · N stages, and the same construction of the single-
packet schedule is valid for dRMT with P = K ·N . □

In addition, due-to the bundle execution requirement, all match
(action) operations in the same equivalence class share the same rel-
ative execution time. Therefore this single-packet schedule satisfies
the modulo constraint IPC=1. This leads to the following corollary:

COROLLARY A.2. Let thRMT be the throughput of an RMT
switch and thdRMT (IPC=i) be the throughput of the corresponding
dRMT switch with IPC=i modulo constraint. Then,

thRMT ≤ thdRMT (IPC=1) ≤ thdRMT (IPC=2).

Note that the second inequality follows from the observation that
any single-packet schedule for dRMT(IPC=1) applies to the less
constrained dRMT(IPC=2).

A.4 Proof of Theorem 3.5
PROOF. We next prove the feasibility equivalence of the full and

the single-packet dRMT schedules. For resource and IPC constraints,
without the loss of generality, we conduct the proof with respect to
match operations, since the exact same arguments hold for action
operations as well.
Direction 1: Assume that we have a fixed schedule that obeys all the
dRMT constraints.
Consider π0, an arbitrary packet that enters the switch at time τ0
and without loss of generality is assigned to processor 0. Then, t(v)
is the number of clock cycles that pass from τ0 to the execution
time of operation v on packet π0 for all v in the ODG. Denote by
M∗
i the set of match operations in an arbitrary equivalence class

i ∈ {0, 1, . . . , P − 1}, i.e., M∗
i = {v | t(v)mod P = i,v ∈ VM }. We

next identify a time at which all members of M∗
i are executed by

processor 0 simultaneously, possibly for different packets. Then,
we use this observation to show that this schedule must respect the
modulo constraints.

Consider the last match operation in M∗
i and its execution time

on π0, i.e., τ = max{τ0 + t(v) | v ∈ M∗
i }. The execution time of any

other member u of M∗
i on π0 is given by t(u) = τ − k · P where k is

a non negative integer. We consider two possible cases with respect
to k:
• k=0: In this case u is executed at time τ on π0.
• k>0: Since a new packet is admitted to processor 0 every P clock

cycles, and since τ ≥ τ0 + k · P , we know that a new packet πk ·P
was admitted to processor 0 at time τ0 + k · P . Then, u is executed
at time τ on πk ·P .

Finally, since u is an arbitrary member of M∗
i , we conclude that all

members of M∗
i are executed at time τ .

Resource constraints. Assume by way of contradiction that this
schedule does not obey the modulo match limit constraint. Namely,
there is an equivalence class i such that the set of match operations
M∗
i requires more than M̄ b-bits-width memory units to be executed

simultaneously. As we have shown above, there exists a time τ such
that all members of M∗

i are executed simultaneously, therefore the
dRMT match limit constraint is violated, hence a contradiction.
IPC constraints. Similarly, assume by way of contradiction that
there is an equivalence class i in which there are match operations
with more than IPC distinct execution times, i.e., |{t(v) | v ∈ M∗

i }| >
IPC. Again, we have established that there exists a time τ such that
all members of M∗

i are executed simultaneously. Since operations
that are executed simultaneously but have different t(v) values must
belong to distinct packets, this means that processor 0 has to op-
erate on more than IPC packets (threads) at time τ leading to a
contradiction.
Dependency constraints: Since {τ0 + t(v) ∀v ∈ ODG} are the
execution times of a viable dRMT schedule for packet π0, the depen-
dency constraints are respected.

Direction 2: Assume that we have a single-packet schedule that
obeys all the modulo constraints.
The single-packet schedule is given by the operations with their
corresponding relative execution times {(v, t(v)) ∀v ∈ ODG} that
respect all the modulo constraints. Specifically, t(v) = k means
that every packet that is admitted to the switch at time τ undergoes
operation v at time τ + k. We first observe that when a processor
follows the single-packet schedule, and receives a new packet every
P clock cycles (i.e., the packets are distributed among the processors
in a strict round-robin fashion), all operations that are executed by it
at a given clock cycle belong to the same equivalence class. We will
now show that applying this single-packet schedule on all entering
packets, when these packets are distributed among the processors in
a strict round-robin fashion, results in a legal schedule for dRMT.
Contention-free matches. Since the ODG is a DAG, each packet
that enters the switch requires only a single access to any match
table. Now, consider two arbitrary packets π1 and π2. This packets
are admitted to the switch at distinct times τ1 and τ2 respectively.
Assume by way of contradiction that both packets want to access the
same match table at the same time τ . Since τ−τ1 , τ−τ2, these two
packets π1 and π2 must have different relative execution times for
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this match operation. This is a contradiction since the single-packet
schedule is identical for all packets.
Resource constraints. We next show that, when a processor follows
the single-packet schedule for all packets, the memory limit con-
straints are respected. Assume by way of contradiction that at time
τ the match limit constraint was exceeded by processor 0 without
loss of generality. Since at any given clock cycle, processor 0 only
executes match operations that belong to the same equivalence class,
the match modulo constraint is violated, hence a contradiction.
IPC constraints. Again, assume by way of contradiction that at
time τ the IPC limit was exceeded by processor 0 without loss of
generality. This means that at time τ , processor 0 executes match
operations with more than IPC distinct relative execution times.
Since only operations that belong to the same equivalence class
are allowed to be executed by processor 0 at time τ , there is an
equivalence class that contains match operations with more than IPC
distinct relative execution times, hence a contradiction.
Dependency constraints. Since all packets follow the same sched-
ule given by {(v, t(v)) ∀v ∈ ODG}, all the dependency constraints
for all packets are respected. □

A.5 Proof of Theorem 3.6
PROOF. We prove that the dRMT scheduling problem is NP-hard

by a polynomial reduction from the bin-packing decision problem.
We begin by formally stating the bin-packing decision problem.

PROBLEM 1. Given a set of n bins B = {B1,B2, · · · ,Bn } each
of volume V and a list ofm items with volumes L = {l1, l2, · · · , lm },
determine whether there is a partition of the items among the bins
such that the volume of all items in a single bin is bounded by V .

Consider an instance ⟨B,V ,L⟩ of Problem 1. We construct a cor-
responding dRMT switch with n processors, where each processor
can modify V header fields at each clock cycle. We set ∆A and IPC
to arbitrary positive integers. We next build an ODG that consists of
m disjoint action nodes where node i requires modifying li distinct
packet header fields. Finally, we require a throughput of 1 (i.e., P=n).
We next show that ⟨B,V ,L⟩ evaluates positively if and only if there
exists a single-packet schedule for the dRMT switch that supports a
throughput of 1 for this ODG.
Direction 1. Assume that ⟨B,V ,L⟩ evaluates positively. Consider a
feasible solution to ⟨B,V ,L⟩ and let L∗j be the set of items that are
assigned to bin Bj for all j.

We construct a corresponding single-packet schedule. For each
node i in ODG we set its relative execution time to the bin number
to which its corresponding item li is assigned to. Formally:

t(i) = j ⇐⇒ li ∈ Bj ∀i, j .
Now, the action modulo constraints hold since in each equiva-

lence class t(i)mod n = t(i), the action fields limit is respected. In
addition, since all operations in an equivalence class have the same
exact relative execution time, each processor works only on a single
thread at each clock cycle. This means that the constraint IPC=1
is respected, in turn, satisfying the IPC constraints for any positive
integer.
Direction 2. Assume that the dRMT switch can support a throughput
of 1 for this ODG. Consider a single-packet schedule that achieves
that throughput and let A∗

j be the set of operations that are assigned
to equivalence class j for all j.

To construct a feasible solution for ⟨B,V ,L⟩ we assign each item
li to a bin number Bj iff its corresponding node i in the ODG belongs
to equivalence class j (i.e., i ∈ A∗

j ). Formally:

li ∈ Bj ⇐⇒ i ∈ A∗
j ∀i, j .

This results in a feasible solution for ⟨B,V ,L⟩ since all items
are assigned to a bin and the volume constraint V of each bin is
respected. □

A.6 Proof of Theorem 3.7
PROOF. We prove that for a given P4 program and dRMT archi-

tecture, a single-packet schedule is feasible for any strictly positive
∆M and ∆A iff it is feasible for ∆M = ∆A = 1.
Direction 1. Assume a feasible single-packet schedule t(v) with
∆M = ∆A = 1. Then, there exists a feasible schedule t̄(v) for any
strictly positive ∆M and ∆A.

First, we set t̄(v) = t(v) for all v such that t(v) = 0. Next, we
consider all the operations according to a legal topological sort of
the ODG. For each operation v we set:
t̄ (v) = min

k≥0
max

u |(u,v )∈ODG
{τ̄ (u, v)+t̄ (u)+k | t̄ (v) mod P = t (v) mod P }

where (u,v) ∈ ODG is an ODG edge, and τ̄ (u,v) is the number of
cycles that must pass betweenu andv (i.e., , ∆A or ∆M). Namely, for
each operation, we maintain its equivalence class as dictated by the
original schedule t(v) but possibly reassign it to a different relative
time that respects the dependency constraints as dictated by ∆A and
∆M. Since all the operations maintain their original equivalence
class we are ensured that this new schedule obeys all the match,
action and IPC modulo constraints. In addition we made sure that
the dependency modulo constraints are respected as well. Thus t̄(v)
is feasible.
Direction 2. Assume a feasible single-packet schedule t(v) with
given strictly positive ∆M and ∆A. Then, t(v) is feasible for ∆M =
∆A = 1.

Since t(v) is feasible, all the match, action and IPC modulo con-
straints are respected. In addition, since ∆M and ∆A are strictly pos-
itive (i.e., at least 1), we are ensured that τ (u,v) ≥ 1 ∀(u,v) ∈ ODG.
Namely, for ∆M = ∆A = 1 the dependency constraints are respected
as well. This concludes the proof.

□

A.7 Proof of Theorem 5.1
PROOF. We prove this by a constructing a bipartite graph where

the nodes on one side are the processors and the nodes on the other
side are the memory clusters. For each processor node, we have
a set of match tables that it needs to access based on the dRMT
ILP schedule. For each memory cluster, we have a set of match
tables located under the cluster that satisfy assumptions (1) and (2)
in the theorem. We draw an edge between a processor node p and
a memory cluster node m if p needs to access a table within m. To
support these accesses on the segmented crossbar, we must find an
edge coloring in this bipartite graph with at most M̄ colors, where
the color corresponds to the segment index used for that memory
access. By König’s theorem [26], for bipartite graphs, the number of
edge colors required to color the graph is the maximum degree of
the graph, i.e., M̄ . □
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Figure 13: Logical diagram of a crossbar with 4 inputs and 4
outputs, each 1 bit wide.
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Figure 14: Sketch of layout with processors, crossbars, and
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3,7 3,6 3,5 3,4 3,3 3,2 3,1 3,0 2,7 2,6 2,5 2,4 2,3 2,2 2,1 2,0 1,7 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0

3,7 2,7 1,7 0,7 3,6 2,6 1,6 0,6 3,5 2,5 1,5 0,5 3,4 2,4 1,4 0,4 3,3 2,3 1,3 0,3 3,2 2,2 1,2 0,2 3,1 2,1 1,1 0,1 3,0 2,0 1,0 0,0

Figure 15: To-the-right routing of shuffle with 4 processors,
W=8.

B RMT ILP FOR SR HEURISTIC
We now provide an ILP formulation for finding a feasible schedule
for an RMT architecture with N M-A stages, where at each such
stage we have a match sub-stage with a match unit limit M̄ , an
action sub-stage with an action field limit Ā and no physical table

placement constraints. As mentioned, we use it as a basis for our
second greedy heuristic SR. Clearly, the objective function and the
dependency constraints are identical to the dRMT ILP. Therefore we
begin by formulating the resource constraints.

We assign all the match and action operations to the 2n sub-stages
of the RMT where even sub-stages correspond to matches and odd
to actions. Accordingly, we define an indicator function s(v, c) such
that s(v, c) = 1 iff operation v (match or action) takes place in sub-
stage c. Namely, since each operation must take place in exactly one
sub-stage we demand:∑

c
s(v, c) = 1 ∀v ∈ ODG. (11)

Now, using these indicators we can formalize the resource con-
straints: ∑

v ∈VM

⌈
k(v)
b

⌉
· s(v, c) ≤ M̄ ∀c, (12)∑

v ∈VA
a(v) · s(v, c) ≤ Ā ∀c . (13)

In addition, we demand that all match operations are assigned to
even sub-stages and all action operations to odd. To that end we
define integer variables oe(v) which we use to enforce these parity
constraints. Formally:

t(v) = 2 · oe(v) ∀v ∈ VM . (14)

t(v) = 2 · oe(v) + 1 ∀v ∈ VA . (15)
This completes the formulation of the RMT ILP.

C CROSSBAR AREA
The primary challenge in implementing a large crossbar in an ASIC
is minimizing the portion of the area that is used only for wiring,
without any gates in it, such as logic, SRAM, or TCAM. In other
words, we want to maximize the ratio of the area containing gates
by the entire area of the ASIC, also called utilization.

A crossbar with 32 inputs and 32 outputs, where each input and
output is only 1 bit wide, requires only a few logic gates and a mod-
est amount of wiring. See Figure 13 for a diagram of the necessary
logic and interconnection pattern for a 4 input-4 output crossbar,
which is simply a 4-to-1 multiplexor for each output bit, with all 4
crossbar inputs as the inputs of all 4 multiplexors. Using commer-
cially available place and route software, it is not difficult to achieve
a utilization of 30% for a 1-bit-wide crossbar with 32 inputs and 32
outputs. We will call this a 32x32x1 crossbar.

If we replace each of the 32 inputs and outputs by a 640-bit-wide
bus of parallel wires, and replace each 32-to-1 multiplexor by a
group of 640 multiplexors placed near each other, the broadcasting
of each input bit to 32 such multiplexors, spread relatively far from
each other on the ASIC, makes it difficult to achieve utilizations as
high as 30%. We will call this a 32x32x640 crossbar.

The basic idea of our recommended approach is not to place the
logic such that all multiplexors for the same 640-bit wide output are
near each other. Instead, create a high-utilization layout of a 32x32x1
crossbar, then repeat that high utilization layout 640 times side by
side.

Since the dRMT processors will have all of their 640 bits of search
key output near each other, for the same processor, and similarly
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Figure 16: Crossbar layout that consumes silicon area unneces-
sarily for shuffles.
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Figure 17: Crossbar layout routing shuffles over logic.

the memory clusters will have their 640 bits of search key input
near each other, this crossbar layout requires a "shuffle" of the wires
carrying the search key out of a processor, to the 32x32x1 crossbars,
and the reverse of that shuffle between the 32x32x1 crossbars and
the memory clusters. We also need 8x96 = 768 bits of table search
results back from the memory clusters to the processors, for a total
width of 640+768=1408 bits. The logical interconnection of all of
this is shown in Figure 14. The interconnection pattern between
processors and 32x32x1 crossbars is labeled "shuffle1" in that figure,
and the interconnection between 32x32x1 crossbars and memory
clusters is labeled "shuffle2". Shuffle2 is the same as shuffle1, flipped
vertically in the figure, so a good physical design for one can be
repeated for the other.

Here are some relevant facts about ASIC silicon technology that
restrict the possible solutions:
• They are constructed of multiple physical layers. Interconnecting

wires can be either in lower or higher layers of the ASIC.
• Gates may not be vertically stacked on top of each other.
• "Local" wiring between logic that are relatively close to each other

are usually implemented via wires in a low layer.
• "Long distance" wiring is usually implemented via wires in a high

layer. Wires in these high layers can be physically placed directly
above gates.

• Parallel wires in low layers can be thinner and placed more closely
to each other, e.g., 36 parallel wires in a width of 1 micron is

achievable in a current 16 nanometer ASIC process. Parallel wires
in a higher layer must be placed further apart, e.g., 16 parallel
wires in a width of 1 micron is achievable in the same process.

• While the direction of wires is not limited by the technology to
be only in the "vertical" and "horizontal" directions (as viewed
from above the two-dimensional ASIC surface), this restriction is
followed by nearly all software used to automate the wire routing
procedure. Two separate layers are typically used for wire routing,
with one layer used mostly in the "vertical" direction and one
mostly in the "horizontal" direction, to make it easy for wires to
cross (when viewed from above) without being connected to each
other.
Given these restrictions, Figure 15 shows a wire routing for the

top-left-to-bottom-right wires in a smaller shuffle, with only 4 pro-
cessors and 8-bit wide buses. The top-right-to-bottom-left wires are
the same as those, flipped horizontally.

When generalizing this to larger shuffles, the maximum number
of parallel tracks of horizontal wires in the top-left-to-bottom-right
part of the shuffle is close to 1/4th of the total wires, or (32×1408)/4
for the large shuffle. That many more parallel tracks are required for
the top-right-to-bottom-left part of the shuffle, for a total of about
(32 × 1408)/2. At the maximum density of 16 parallel wires in a
width of 1 micron for wires routed in the top layers of the ASIC, this
shuffle must be at least (32 × 1408)/(2 × 16) = 1408 microns high,
or about 1.4 millimeters.

Figure 16 shows an approximate physical layout of 32 processors
in a row on top, shuffle1 below that, then a row of 1408 32 × 32 × 1
crossbars, shuffle2, and 32 memory clusters at the bottom. This is
an inefficient layout, because the top layer wires in shuffle1 and
shuffle2 have no gates beneath them.

Figure 17 shows the significant area savings that can be achieved
by routing shuffle1 and shuffle2 over the processors and memory
clusters (alternately, both can be routed over the memory clusters).
This is possible because while the separation between the horizontal
wires is the minimum possible of 16 wires per micron, the separation
between vertical wires is about 5 times more than that, leaving plenty
of room for more vertical wires to run through the middle of both
shuffle patterns.
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