
Sluice: Network-Wide Data Plane Programming
Vikas Natesh1 Pravein Govindan Kannan2 Anirudh Sivaraman1 Ravi Netravali3

1New York University 2National University of Singapore 3University of California, Los Angeles

CCS CONCEPTS
• Networks → Programming interfaces; Programmable net-
works; Network management.

KEYWORDS
Network-wide programming; data plane
1 INTRODUCTION
The last several years have seen the emergence of programmable
network devices including both programmable switching chips
and programmable network interface cards (NICs). Along with
the rise of x86-based packet processing for middleboxes and vir-
tual switches, these trends point towards a future where the en-
tire network will be programmable. The benefits of network pro-
grammability range from commercial use cases such as network
virtualization [9] implemented on the Open vSwitch platform [11]
to recent research works that implement packet scheduling [12],
measurement [10], and application offload of niche applications on
programmable switches [7, 8].

While the benefits of programmability are clear, they are difficult
to reap because programming the network as a whole remains a
challenge. Current programming languages target individual net-
work devices, e.g., P4 for the Tofino [1] programmable switching
chip and the Netronome SmartNIC [3]. However, at present, there
is no unified programming model to express and implement general
data plane functionality at the level of an entire network, without
having to individually program each network device.

Prior work has looked at programming an entire network. In
particular, Maple [13] was an early example of a network-wide
programming model designed for OpenFlow switches. Maple au-
tomatically divides functionality between a stateless component
running on switches and a stateful component running on the
network’s controller. However, this creates overhead as packets
requiring stateful processing must be forwarded to the controller.
SNAP [6] is a more recent example of network-wide programming;
unlike Maple, it offloads stateful functionality to switches by lever-
aging stateful processing available in programmable switches while
providing the operator with a view of one-big-switch (OBS) of per-
sistent arrays. This abstraction is good at expressing network-wide
policies that do not require explicit placement of packet processing
code on particular devices, e.g., DNS tunnel detection in a LAN.
However, to develop applications that do require such specific place-
ment, a more fine-grained programming model is necessary. For
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342343

Sluice	
Program

@device1
Snippet	a	

@device2
Snippet	b

P4	
Compiler

Sluice	
Compiler

Network

-
-
-
-
-
-
-
-

Device	2	
program

Device	1
program

Device	n
program

Figure 1: Sluice Workflow

instance, an operator may wish to run active queue management
(AQM), ECN, and DCTCP [5] on specific switches, but not all. This
is hard to achieve using SNAP. Further, SNAP does not provide
abstractions to express queue-based measurement e.g., tracking an
EWMA of queueing latencies on a particular switch. To summarize,
Maple and SNAP cannot express programmable switch functional-
ity where the network operator requires specific placement of code
on specific devices, e.g., packet scheduling, congestion control, and
load balancing.

This demo presents Sluice, a programming model that takes a
network-wide specification of the data plane and compiles it into
runnable code that can be launched directly on the programmable
devices of a network. In contrast to prior network-wide program-
ming models like SNAP and Maple that were focused on specific
tasks (e.g., routing and security policies), Sluice aims to be more
generic, but potentially at the cost of operator effort in specifying
code placement. Sluice endows network operators with the ability
to design and deploy large network programs for various functions
such as scheduling, measurement, and in-network applications. The
benefits of Sluice can be summarized as follows: (1) Sluice provides
the same functionality as a per-device language like P4 but makes it
easier to program the data plane of an entire network by abstracting
device-specific architectural details like stateful ALUs, pipelines,
etc., and (2) Sluice automatically reduces the amount of boilerplate
code needed towrite data plane functionality. For instance, the 8 line
trafficmatrix Sluice programwe demonstrate translates into over 40
lines of P4 (excluding header/metadata/parser definitions and ipv4
forwarding P4 code). We demonstrate Sluice’s functionality and
ease of use via two examples: traffic matrix generation for network
analysis and a streaming join-filter operation. Sluice is open-source
and available at https://github.com/sluice-project/sluice.

2 SLUICE DESIGN
In the Sluice model, a network-wide program consists of high-level
code snippets annotated by the operator to run on particular de-
vices in a network. The code in each snippet is to be executed on
packets arriving at its corresponding device. Snippets support a
variety of operations: read-from/write-to packets; arithmetic using
packet/meta data, local variables, or stateful register arrays; and
control flow statements. To handle custom packet headers not sup-
ported by default (Ethernet/IP/UDP/TCP), users may define packet

https://doi.org/10.1145/3342280.3342343

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China V. Natesh. et al.

s2

s3s1h1 h3

h2

Figure 2: Topology For Traffic Matrix Demo
header declarations similar to C structs. An optional annotation
in the packet declaration defines the parser condition for these
user-defined headers (for example, see packet p in Figure 4). Sluice
programs may also import device-specific variables/attributes for
use in code snippets. Sluice also lets the programmer restrict snip-
pets to operate on specific flows or IP address ranges.

Figure 1 describes the Sluice workflow. The compiler translates
each snippet of a sluice program into a device-specific program. Af-
ter initial parsing, lines of code in the snippet are decomposed into
a directed acyclic graph (DAG) that maps dependencies between
variables in each snippet. This graph is then passed to the backend
of the compiler that generates the corresponding P4 program for
that device, e.g., the P4 Behavioral Model [4] or Tofino [1].1

3 DEMONSTRATIONS
3.1 Traffic Matrix
Figure 2 displays the Mininet [2] network topology used for our
traffic matrix demo. Packets are sent over UDP from each host to
all other hosts according to a Poisson traffic model with mean inter-
arrival time of 0.5 seconds. The code below is our Sluice program
with a single snippet traffic_example that is launched on all switches
of the network. To run the Mininet emulation, the user passes the
Sluice program and network topology to the compiler. The compiler
generates P4 code to run on each switch as well as control plane
table entries for routing packets through the topology.
import d ev i c e psa ;
pa cke t p : udp (s r c P o r t : 1 2 3 4)

nhops : b i t <32 >;

@ bmv2 : ;
s n i p p e t t r a f f i c _ e x amp l e ()

p e r s i s t e n t cn t : b i t <32 > [10] ;
cn t [psa . i n g r e s s _ p o r t] = cn t [psa . i n g r e s s _ p o r t] + 1 ;
p . nhops = p . nhops + 1 ;

This demo shows how a simple Sluice program can be used to
measure link usage for a specific UDP flow (srcport 1234) across
the network. Each packet p contains a custom header nhops that
is incremented each time the packet enters a switch to inform the
receiving host of the number of hops the packet took. Each switch
maintains a stateful register counter cnt, indexed by the switch
ingress port, that tracks how many packets have entered through
that ingress port. Aggregated over all switches, these counters
represent a matrix measuring each link’s usage in the network
at a given time. This matrix (residing on the whole network) is
then queried once every second from the control plane to generate
time-series plots of packet rate for each link. Figure 3 displays the
cumulative histogram of packet rates on link s1-s3 after collecting
data for 15 minutes. The expected CDF of packet rates Poisson(µ = 2
packets/sec) is also plotted to validate the Sluice translation.

1Currently we only support the P4 Behavioral Model

0 1 2 3 4 5 6
Packets/sec

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Expected
Observed

Figure 3: CDF of Packet Rate on link s1-s3

s2s1
(4,	6,	0)
(3,	1,	0)
(7,	2,	0)

(9,	0,	3)
(3,	0,	4)
(7,	0,	5)

h2

h1 h3 (7,	2,	5)

INNER	JOIN
(3,	1,	4)
(7,	2,	5)

FILTER
(7,	2,	5)			

@ bmv2 : s1;
Snippet join()

persistent i_id : bit<1>[100];
persistent c_id : bit<1>[100];
persistent i_t : bit<32>[100];
persistent c_t : bit<32>[100];
transient z: bit<1>;
if(udp.srcPort == 11111)

i_id[p.ad_id] = 1;
i_t[p.ad_id] = p.i_t;
z = c_id[p.ad_id] == 1;
p.c_t = z ? c_t[p.ad_id] : 0;

if(udp.srcPort == 22222)
c_id[p.ad_id] = 1;
c_t[p.ad_id] = p.c_t;
z = i_id[p.ad_id] == 1;
p.i_t = z ? i_t[p.ad_id] : 0;

@ bmv2 : s2;
Snippet filter()

transient c_null : bit<1>;
transient i_null : bit<1>;
c_null = p.c_t == 0;
i_null = p.i_t == 0;
if(c_null or i_null)

drop();
if(p.ad_id != 7)

drop();

Packet p: udp(srcPort :
11111, 22222)

ad_id : bit<32>;
i_t : bit<32>;
c_t : bit<32>;

Figure 4: Streaming example topology, data flow, and code
placement on switches

3.2 Stream processing
This example demonstrates a simple join-filter operation between
two streams of tuples. A stream is an unbounded table where a
packet represents a tuple of data (ad_id, impression_time, click_time)
enclosed in a custom header. The topology in Figure 4 describes the
data flow and shows how an operator query runs on the switches
of the network. Host 1 sends a stream of ad impressions while Host
2 sends a stream of ad clicks. The two streams are joined on the
ad_id field at s1 and filtered on the ad_id field at s2 and the result
is sent to h3.
4 FUTUREWORK
An optimizing Sluice compiler. We envision using the depen-
dency DAG (§2) to provide several automatic optimizations and
code transformations. For example, it is possible that certain lines
of code in a snippet cannot be run on the device annotated by the
operator, e.g., programmable switching chips have limited support
for floating point. or complex string operations. Code containing
such features must be moved to the control plane or an end host
while at the same time, preserving the original program semantics
intended by the operator. Doing this automatically would free the
Sluice programmer from reasoning about these semantics.

Supporting multi-tenancy. Another area of future work is al-
lowing Sluice to support multiple tenants with their own Sluice
programs running on their own virtual networks overlayed on
the same physical topology. If each tenant wants to run their own
network-wide program on their virtual topology, the network oper-
ator will need to merge all these into one data plane implementation
that runs on the entire physical network. Extending Sluice to sup-
port this multi-tenancy use case would allow us to provide the
same benefits to the data plane that multi-tenant network virtual-
ization [9] provided for the control plane.

Sluice: Network-Wide Data Plane Programming SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Barefoot Tofino. https://www.barefootnetworks.com/products/brief-tofino. Ac-

cessed: 2019-07-02.
[2] Mininet. http://mininet.org/. Accessed: 2019-07-02.
[3] Netronome SmartNIC. https://www.netronome.com/products/smartnic/

overview. Accessed: 2019-07-02.
[4] P4 Behavioral Model. https://github.com/p4lang/behavioral-model. Accessed:

2019-07-02.
[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages 63–74, New York, NY, USA,
2010. ACM.

[6] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker. SNAP: Stateful
Network-Wide Abstractions for Packet Processing. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, pages 29–43, New York, NY, USA,
2016. ACM.

[7] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica. Netchain:
Scale-free sub-RTT Coordination. In Proceedings of the 15th USENIX Conference on
Networked Systems Design and Implementation, NSDI’18, pages 35–49, Berkeley,
CA, USA, 2018. USENIX Association.

[8] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica. NetCache:
Balancing Key-Value Stores with Fast In-Network Caching. In Proceedings of the

26th Symposium on Operating Systems Principles, SOSP ’17, pages 121–136, New
York, NY, USA, 2017. ACM.

[9] T. Koponen et al. Network Virtualization in Multi-tenant Datacenters. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI’14, pages 203–216, Berkeley, CA, USA, 2014. USENIX Association.

[10] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyaku-
mar, and C. Kim. Language-Directed Hardware Design for Network Performance
Monitoring. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 85–98, New York, NY, USA, 2017.
ACM.

[11] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado. The Design and Implementation
of Open vSwitch. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, NSDI’15, pages 117–130, Berkeley, CA, USA,
2015. USENIX Association.

[12] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable Packet
Scheduling at Line Rate. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, pages 44–57, New York, NY, USA, 2016. ACM.

[13] A. Voellmy et al. Maple: Simplifying SDN Programming Using Algorithmic
Policies. In Proceedings of SIGCOMM, 2013.

https://www.barefootnetworks.com/products/brief-tofino
http://mininet.org/
https://www.netronome.com/products/smartnic/overview
https://www.netronome.com/products/smartnic/overview
https://github.com/p4lang/behavioral-model

	1 Introduction
	2 Sluice Design
	3 Demonstrations
	3.1 Traffic Matrix
	3.2 Stream processing

	4 Future Work
	References

