
DC.p4: Programming the Forwarding Plane of a
Data-Center Switch

Anirudh Sivaraman*, Changhoon Kim†, Ramkumar Krishnamoorthy†, Advait Dixit†, Mihai Budiu†

*Massachusetts Institute of Technology, †Barefoot Networks
anirudh@csail.mit.edu,{chang, kram, adixit, mbudiu}@barefootnetworks.com

ABSTRACT
The P4 programming language [29, 16] has been recently
proposed as a high-level language to program the forward-
ing plane of programmable packet processors, spanning the
spectrum from software switches through FPGAs, NPUs
and reconfigurable hardware switches. This paper presents
a case study that uses P4 to express the forwarding plane
behavior of a data-center switch, comparable in function-
ality to single-chip shared-memory switches found in many
data centers today.

This case study allows us to understand how specific P4
constructs were useful in modeling specific data-center switch
features. We also outline additional language constructs
that needed to be added to P4 to support certain features
of a data-center switch. We discuss several lessons that we
learned in the process and distill these into a proposal for
how P4 could evolve in the future.

CCS Concepts
•Networks → Programmable networks;

Keywords
Programmable forwarding planes; language design; data-
center switch;

1. INTRODUCTION
The Internet has long prided itself on an architecture that

stresses smart endpoints and a dumb network [32, 45]. Over
time though, with evolving application requirements, the
network has become smarter with network switches imple-
menting functions such as access control, tunneling, and
overlay formats. A typical switch today implements func-
tionality that in aggregate covers over 7000 RFCs. This
number is growing by the day as new protocols [12, 24, 5]
are standardized.

This large feature set is typically implemented by a switch-
ing chip [6, 11] with dedicated hardware to support these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR 2015, June 17 - 18, 2015, Santa Clara, CA, USA

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3451-8/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2774993.2775007

features. These chips support some flexibility by having a
few configurable knobs, but are inherently not future-proof:
a new protocol format usually necessitates an expensive re-
design of the chip that can easily take a few years given the
long time scales in hardware design. This is perhaps best
illustrated by the long lag time between the standardization
and availability of VXLAN [24], a recently proposed encap-
sulation format.

More importantly, the switch’s functionalities and capa-
bilities are dictated by the switch vendor and not the net-
work operator, who is likely in the best position to know
exactly how the switch is going to be used.

Over the last few years, several trends suggest a move to-
wards a “top-down” view dictated by the network operator,
as opposed to the “bottom-up” view mandated by the switch
vendor. First, software-defined networking (SDN) [43] stan-
dardizes a common interface to the switch control plane and
allows operators [38] to write their own control applications
using that interface. Second, emerging switch architectures
such as the RMT architecture [30] and commercial switching
chips such as Intel’s FlexPipe [7] and Cavium’s Xpliant [25]
embrace field programmability as an explicit goal. Third,
languages such as P4 [29, 17] and POF [47] provide language
support to express this architectural flexibility. Fourth, re-
cent research on compilers [40] for these languages seeks to
bridge the gap between the language and the hardware.

With the availability of language, architecture, and com-
piler support for programmable forwarding planes, it is nat-
ural to ask what useful applications can be built with a pro-
grammable forwarding plane? To answer this question, we
set out to express the forwarding behavior of a data-center
switch using P4. The resulting P4 program exceeded 2500
lines of code and is likely the largest software artifact ex-
pressed in P4 yet. This allowed us to understand how well
P4 serves its purpose as a packet-processing language.

We begin this paper by reviewing (§2) the P4 language
proposal and abstract switch model [29, 16] and describe our
development environment (§3) to compile and execute P4
programs. We then focus on one specific P4 program (§4),
DC.p4 that expresses the forwarding behavior typical of a
data-center switch today (Table 1). This exercise resulted
in several new P4 language features that were added to the
original proposal for P4 [29] and are now part of the P4
language specification [16]. Based on our experience with
DC.p4 (§5), we propose a pathway for evolving P4 (§6).

The P4 program used throughout this paper is open source
and is available, along with directions to compile and execute
it, at http://git.io/sosr15-p4. The P4 compiler front end

http://dx.doi.org/10.1145/2774993.2775007
http://git.io/sosr15-p4

and the software switch that runs the compiled program are
also open source and available at http://p4.org/code.html
We hope these software artifacts encourage wider adoption
of P4 and lead to the formation of an open-source commu-
nity driving P4 development.

2. P4 PRIMER
This section briefly reviews P4’s abstract switch model

and language constructs to provide context for the rest of
the paper. For a more detailed look at P4 and its syntax, we
encourage the reader to consult either the paper describing
P4 [29] or the P4 specification [16]

As a design goal, P4 tries to be portable in two ways.
First, P4 programs are expected to be target-independent,
allowing a programmer to specify packet processing uni-
formly across different implementation platforms: software
switches [41], FPGA-based switches [3], NPUs [9], and re-
configurable hardware [30, 7] switches. Second, the P4 lan-
guage itself is protocol-independent in that it doesn’t na-
tively model any specific protocols. Instead, it provides ab-
stractions that allow a programmer to express both existing
and future protocol formats in a common syntax.

Abstract switch model: P4 assumes an abstract switch
model where a switch has a programmable parser to parse
packets from incoming bits on a wire. Packets then enter an
ingress pipeline consisting of a sequence of match-action ta-
bles. Each match-action table can modify the packets that
it sees before sending it to the next one. At the end of
the ingress pipeline, packets from multiple input ports are
switched to their output ports by a buffering subsystem.
Packets then enter an egress pipeline that also consists of a
sequence of match-action tables for further packet process-
ing. Finally, a deparser serializes the packets onto the wire.

Headers: The programmer specifies a set of header def-
initions that the switch is expected to process. A header
definition specifies the fields belonging to that header, their
sizes, and the order of the fields within that header. For in-
stance, the Ethernet header specifies the 6-byte source and
destination MAC addresses and the 2-byte EtherType.

Parsers: The parser abstraction specifies how a switch
processes incoming packets to populate headers within these
packets. P4 models the parser as a state machine that
processes headers sequentially within a packet and expects
the programmer to provide the order of headers within the
packet. For instance, the programmer would specify that
the IPv4 header follows the Ethernet header.

Actions: P4’s actions generalize OpenFlow’s [43] fixed
action set (forward, drop, mark, etc) to a user-specifiable
set of actions. These flexible action descriptions are com-
posed from a small set of primitive actions. For instance,
a compound action on a packet, “set next hop”, could be
composed out of two primitive actions: one that sets the
next hop’s MAC address and another that decrements the
IP TTL field.

Tables: Tables generalize OpenFlow’s match-action ab-
straction to match on any subset of the header fields parsed
by the parser. In contrast to OpenFlow, the fields on which
matches are possible are not fixed and limited to existing
protocol formats; rather, they can be any field within the
headers specified by the programmer. The P4 table ab-
straction specifies the fields to match on (such as source
or destination IP or MAC address), the match policy (such
as exact match, ternary matches with wildcards, or longest-

prefix match), the size of the table to assist the compiler
back-end [40], and the allowed set of actions for this table.
As an example, longest-prefix IP routing would match on
the IP destination field, with the action setting the next-
hop MAC address and decrementing the TTL.

Control flow: Lastly, P4 provides an abstraction for con-
trol flow i.e. the order in which tables must be processed on
an incoming packet. For instance, the programmer could
specify that IP Access Control be applied before IP routing.
Control flow can also be conditional where a packet is sent
to the next table only if a specific boolean predicate on the
packet fields is true.

3. A P4 DEVELOPMENT ENVIRONMENT
We briefly describe our development environment for writ-

ing, compiling, and debugging P4 programs as context for
the rest of the paper. A subsequent paper will discuss the
development environment in greater detail; here, we only
summarize the main features to provide enough context for
the discussion to follow.

The programmer writes P4 programs using the syntax de-
scribed in the P4 specification [16]. The programmer can
also use C macros such as #define and #include within the
P4 program. These macros are first expanded by the C pre-
processor and the output of the preprocessor is passed to a
P4 compiler. The P4 program is then compiled by the P4
compiler front end that checks for syntax errors and unde-
fined references. The compiler also analyzes the P4 program
to determine table dependencies mandated by the control
flow. Table dependencies are of two forms: data dependen-
cies, where a second table matches on a field that is set by
an action in the first, and control dependencies, where the
second table’s execution is predicated on a field set by the
first table.

In this paper, the compiler target for our P4 programs is
a software switch, to ease the task of prototyping. In the fu-
ture, we expect P4 will be used to program the forwarding
plane for a variety of targets such as the RMT architec-
ture [30] and Intel’s FlexPipe [7]. For a software switch tar-
get, the table-dependency graph is used to generate C code
that is functionally equivalent to the P4 program. This C
code is compiled into a static library, which is then linked
with a software switch core that can read and write packets
from a virtual Ethernet interface. The linking produces a
software switch that executes the P4 program. The software
switch limits the rate of packet dequeues from the shared
buffer to the egress pipeline to emulate a specific link rate.

The compiler also auto-generates a run-time API for the
forwarding plane that can be used by a controller to popu-
late table entries at run time. Presently, this API uses the
Thrift RPC [2] framework for Remote Procedure Calls, al-
though it could be extended to generate an API resembling
either OpenFlow [43] or the Open Compute Project’s Switch
Abstraction Interface [13, 20]. A block diagram of the soft-
ware switch and its relation to the controller is shown in
Figure 1.

The software switch can be used as a drop-in replacement
for Open vSwitch [15] within Mininet [42]. This allows us to
create topologies of such P4-programmed switches for larger
tests. Within this topology, the switches forward traffic
between end hosts just like Open vSwitch, allowing us to
test the P4 programs with both closed-loop traffic such as
congestion-controlled TCP and open-loop traffic such as test

http://p4.org/code.html

Figure 1: Block diagram of 4-port software switch that executes P4 programs. The switch communicates with
other switches or end-hosts within Mininet through the veth interfaces, which are Linux Virtual Ethernet
Interfaces [23]. For scalability, packet processing is handled by a thread pool with each thread in the pool
responsible for a subset of ports.

packets generated by OFTest [14]. We have used both ap-
proaches to test the P4 program presented in this paper.

4. A DATA-CENTER SWITCH IN P4
We now look at a complete P4 program, DC.p4, which

captures the forwarding behavior of a data-center switching
chip (Table 1 captures the feature set covered by this pro-
gram). In total, the program contains over 2500 lines of P4
code, 25 ingress tables, 12 egress tables, and a table depen-
dency graph (i.e. the graph induced by control and data
dependencies between tables) with a diameter of 10. This
program has substantial complexity, measured both in the
number of lines of code and the complexity of its dependency
graph, allowing us to evaluate P4 in a realistic setting.

Code for DC.p4 is available at http://git.io/sosr15-p4. It
consists of the main file DC.p4 that specifies the program’s
control flow. Within the “includes” folder, headers.p4 con-
tains header definitions and parser.p4 specifies the parser
state machine. The “table definitions” folder contains table
definitions for the ingress and egress pipelines. Throughout
this section, we use P4 files from this code base to explain
specific language features.

We first look at features from Table 1 that could be cap-
tured by P4’s original constructs (§4.1) and then move on
to features that required new language constructs (§4.2).

4.1 Features captured by the original language
Many features listed in Table 1 can be expressed naturally

using the P4 constructs described in the original P4 pro-
posal [29]. For instance, IP forwarding (ip fib.p4) based on
either exact, ternary, or longest prefix matches is expressed
through a table that uses one of the three match types when
matching on the destination address. Similarly, packet vali-
dation, such as forbidding Martian Packets [10] and packets
with options, in validate packet.p4 is also expressed easily
as an exact or ternary match on the appropriate field.

4.2 Language Changes
Header stacks: Variable-length headers, where there

could be zero or more instances of the same header type, are
common in real network protocols. MPLS and VLAN tags

are a case in point. The original proposal for P4 [29] doesn’t
model this explicitly. We now model these using an array of
header instances, where each instance is of the same header
type. An example is provided in port vlan mapping.p4

Counters: So far, our discussion of P4 hasn’t dealt with
state in the forwarding plane that must be persisted across
packets. In practice, however, persistent state in the form
of counters is useful in tracking how many times a par-
ticular routing table entry has been encountered, or how
many packets were dropped by an ACL rule. To capture
these requirements, we introduced the notion of counters.
mac ip acl.p4 illustrates an example using counters to track
the number of matches for every entry in the ip acl table.

Field lists: Field lists are an abstraction to represent
a group of fields that are combined together to produce a
single scalar value. One use case of a field list is in comput-
ing hashes based on the 5-tuple, used for randomized load
balancing in Equal Cost Multi Path routing (ECMP) [1],

This example is shown in ecmp group.p4. Here the field
list consists of the flow’s 5-tuple and the accumulate opera-
tion on the field list (represented by the field list calculation
keyword) specifies a CRC-16 hash across all fields.

Match-select-action tables: Match-action tables are
now ubiquitous in software-defined networking. The match-
action abstraction assumes a one-to-one mapping from a
match to an action.

Some forwarding-plane features don’t fit within this ab-
straction. The ECMP example above (ecmp group.p4), for
instance, needs to assign a matched flow to one among a set
of available ports for effective load balancing. The action in
this case is the output port selection, and isn’t static; it is
decided dynamically based on a random hash of the 5-tuple.

To model this, we introduced the notion of action profiles:
a table of actions that a match-action table can index to
dynamically select an action at run time. The process of
action selection is modeled by the action selector construct.
In the ECMP case, this is ecmp hash, a random hash of the
5-tuple to determine the runtime action.

Action profiles can also be used without a selector to refer
to an action from a common set of actions. This is useful
when multiple table entries share both actions and action

http://git.io/sosr15-p4

Pipeline Functionality Language constructs Source code
Ingress Virtual LANs (VLANs) Action profiles, header lists port vlan mapping.p4
Ingress Spanning Tree Protocol Exact match spanning tree.p4

Ingress Common logic to handle
routing for NVGRE [12],
VXLAN [24], and ERSPAN [5]
tunnels

Exact match

outer rmac.p4
ipv4 dest vtep.p4
ipv4 src vtep.p4
tunnel.p4

Ingress Packet validation Exact match validate packet.p4
Ingress ECMP Action profiles, Action selectors, Field

lists
ecmp group.p4

Ingress IP forwarding Longest-prefix match ip fib.p4
Ingress Link Aggregation (LAG) Action profiles, Action selectors, Field

lists
lag group.p4

Ingress MAC and IP Access Control
Lists

Counters mac ip acl.p4

Ingress Packet Mirroring Clone packet mirror acl.p4
Ingress MAC learning Digest Generation learn notify.p4
Egress Tunnel decapsulation for

NVGRE, VXLAN, ERSPAN
Add headers tunnel decap.p4

Egress Tunnel encapsulation for
NVGRE, VXLAN, ERSPAN

Remove headers
modify field with hash

tunnel rewrite.p4
tunnel src rewrite.p4
tunnel dest rewrite.p4

Egress VLAN tag add/removal Header lists egress vlan xlate.p4
Egress MTU Check Ternary match on mtu check fail field egress system acl.p4
Egress Process packets to/from switch

CPU
Add/remove header cpu rewrite.p4

Table 1: Feature list of DC.p4 along with language constructs and corresponding source files

parameters. vlan port mapping.p4 provides an example of
this latter use case.

New actions: P4’s premise is that a small set of primi-
tive actions can be composed together into larger compound
actions. This is largely true: of the 90 compound actions
in DC.p4, 83 are composed entirely from primitive actions
such as setting field values, addition or subtraction on fields,
copying into and out of fields, and adding or removing fields.

That said, we had to add a few new primitive actions to
support some of the features in Table 1. The new primitive
actions and their use cases are listed below:

1. Packet cloning is used to clone packets. mirror acl.p4
shows an example. The mirror acl table matches on a
set of packet fields to determine which packets to clone.
The action for this table clones the packet using the
primitive clone ingress pkt to egress and sets a session
id to denote the mirroring session (the encapsulation
format and destination port of cloned packets).

2. Packet dropping drops packets and is used for ac-
cess control (system acl.p4, egress system acl.p4, and
egress block.p4)

3. Digest generation creates a digest containing spe-
cific fields in the packet. This primitive produces a
concise representation of the packet without modifying
the packet in flight and is useful for learning: where
the control plane is made aware of the existence of a
new flow. Specific examples of learning are the MAC
learning functionality in learn notify.p4, used to learn
new MAC addresses and OpenFlow’s Packet-In [19, 21]
mechanism that notifies the SDN controller whenever
there is a miss in the match-action table.

4. The modify field with hash primitive sets a specific
packet field to a hash value generated by an algorithm
like CRC-16. It is useful when tunneling and ECMP
are combined. For example, let’s assume a router per-
forms ECMP by computing a hash on the packet’s 5-
tuple. When tunneling and ECMP are combined, the
5-tuple will be identical for all flows with the same tun-
nel end points, causing uneven load balancing. How-
ever, there is sufficient diversity within the 5-tuples of
the encapsulated packets, which can still be exploited
for load balancing. A CRC-16 hash on the encapsu-
lated 5-tuple can be used to set the packet’s outer UDP
source port, in the process creating sufficient diversity
for load balancing. tunnel rewrite.p4 illustrates this.

4.3 Features that are not yet modeled in P4
P4 was not originally designed to express how packets are

scheduled (e.g. strict priorities, WFQ [34], etc). This is
because—unlike packet forwarding, multipath routing, and
access control—packet scheduling requires looking at multi-
ple packets concurrently to determine which packet to sched-
ule next. Therefore, today, P4 treats packet scheduling as
a black-box. Given the many new ideas that use packet
scheduling to improve application performance in data cen-
ters [26, 27, 37] it is natural to ask how P4 can be extended.

5. LESSONS LEARNED
We set out to evaluate P4 through one specific case study:

the forwarding plane of a data-center switch. While a data-
center switch is just one example of a forwarding plane, the
exercise has taught us several lessons, described below.

5.1 What P4 gets right
P4 has the right level of abstraction for many packet-

processing tasks. Proposals such as Protocol-Oblivious For-
warding [47, 18] manipulate the entire packet header using
lengths and offsets, requiring tedious bit manipulation from
the programmer. In contrast, P4 has language support for
specifying both packet headers and packet parsing. This al-
lows the programmer to think in terms of header fields rather
than bits. It also allows the compiler to autogenerate the
packet parser, eliminating several sources of error resulting
from manual parsing [28].

By making tables first-class citizens, P4 benefits from
the success of OpenFlow’s match-action table abstraction.
Match-action tables are a natural construct for many net-
work programmers because forwarding behavior (routing,
ACLs, tunnels) has been structured as a table lookup for
decades now.

Lastly, P4 has a simple cost model: the per-packet latency,
memory footprint, and maximum throughput of a packet-
processing program can all be determined at compile time.
The latency cost of a control-flow dependency is equal to the
processing delay of a single stage in a switch pipeline. The
memory footprint of an additional table is given by the table
size in the P4 program. If the P4 program fits in a given
switch backend, its maximum throughput is limited only by
the maximum processing rate of the underlying hardware,
regardless of the program itself. Several language features
contribute to this simple cost model: unlike packet process-
ing based on imperative languages such as C, P4 forbids
loops with unknown iteration counts and doesn’t support
dynamic memory allocation—both of which lead to perfor-
mance variance at run time.1

5.2 Avenues for improvement
P4’s current support for modularity and information hid-

ing is limited to C’s #include statements that can be embed-
ded within P4 code to move unrelated parts of the program
to separate files. This is a rather weak form of modularity:
a table within the P4 program can manipulate any header
field in its actions, leading to undesirable coupling between
tables. P4 also doesn’t make explicit the flow of information
from one table to another: the programmer needs to look at
both tables to determine what fields are written and read
by each table.

P4 assumes parallel semantics for the execution of prim-
itive actions within compound actions. Being closer to the
way hardware works, this makes the compiler’s job easier.
In the process, it shifts the burden to the programmer, who
has to reason about parallel-execution semantics. This is es-
pecially important considering that a large body of packet-
processing software, such as the Linux qdisc subsystem, in-
cludes imperative code that is written assuming sequential
semantics. If P4 will have to successfully span the spectrum
from reconfigurable hardware to software switches, parallel
execution semantics might be overly constraining.

While the language has well-defined types for packet head-
ers and rigidly limits the permitted modifications on these

1In practice, the cost model also depends on the target: a
software switch might emulate a ternary-match table using a
trie instead of a hardware TCAM, causing lookup latencies
to increase with table size. However, even for such targets,
P4’s restrictive constructs simplify the cost model relative
to a Turing-complete language like C.

headers, it is under-specified in parts. For instance, what
is the behavior when an IP TTL field is decremented by 1
when it is already 0? Does it wrap around, become nega-
tive, or is it undefined? C has been plagued by such cases of
undefined behavior in the past [48], and we would be remiss
to repeat the same mistakes.

Expressing a data-center switch in P4 has taught us that
we need new primitives such as digest generation and cloning.
However, adding primitives to a language to capture new re-
quirements is something to be wary of. It risks bloating the
language core with a large set of keywords that are opaque
to—and, hence cannot be optimized by—the compiler.

6. LOOKING FORWARD
The lessons learned from using P4 to describe a data-

center switch suggest a pathway to evolve P4 in the future.
We outline a few suggestions below.

6.1 Architecture-language separation
One important observation is that P4 could be much more

than just a switch datapath description language. For in-
stance, P4 could conceivably be used to describe the for-
warding plane of a firewall or a network interface card (NIC).
The P4 specification mandates that P4 be used to program
switches implementing a fixed abstract forwarding model
(Figure 1 in the P4 specification [16]). In practice, how-
ever, different packet-processing devices such as firewalls and
NICs have very different packet-processing architectures.

To broaden the scope of P4 and accommodate such sce-
narios, we propose separating out the abstract switch model
from the language definition. In this proposal, the switch
model would be replaced by a model of the target architec-
ture, without being restricted to switches alone. The target
architecture model would be supplied by the target vendor
and would not be part of the language definition. The target
architecture is analogous to the concept of an instruction set
architecture used by general-purpose CPUs today.

The target architecture model would identify the P4 pro-
grammable blocks in a target, along with non-programmable
(fixed-function) blocks by defining the interfaces between
the programmable and non-programmable blocks. Porta-
bility would then guarantee that a P4 program is portable
across all targets that implement the same target architec-
ture model.

Examples of fixed-function blocks would include packet
scheduling, active queue management, and checksums. These
fixed-function blocks would interact with other programmable
blocks, such as match-action tables through well-defined in-
terfaces specified by the target architecture model. Some
new language features, such as counters and field lists, which
had to be added to P4, (§4.2) could potentially be modeled
as fixed-function blocks that implement an increment op-
eration and a checksum respectively. These blocks would
specify their complete behavior and input/output interfaces
with other fixed-function and programmable blocks.

This would allow the core language to remain small by
having fewer keywords. As a result, the language and tar-
get architecture models could evolve independently. This
would permit organic growth of a variety of target architec-
tures and their associated libraries containing fixed-function
blocks. Instead of repeatedly extending the language to
support new features, most additions would be made to
libraries—providing a more sustainable alternative. Initially,

these blocks could be part of vendor-specific libraries, such
as the Intel IPP [8]. If these blocks become widely sup-
ported, they could migrate into a standard library.

6.2 More complete language semantics
Certain aspects of P4 are incompletely specified. Exam-

ples include the overflow semantics of integers, exception
handling, casting between different data types, and the ini-
tial values of table entries and packet attributes.

We propose that P4 standardize these behaviors. Prac-
tically, though, there is a tension between standardization
and target independence. For instance, the overflow behav-
ior might be different depending on the switch architecture.
Mandating a specific overflow behavior could result in pro-
grams that work on certain architectures, but don’t work on
others.

6.3 Better support for modularity
Currently, P4 supports embedding #include statements

that are processed by the C preprocessor, allowing a pro-
grammer to separate out distinct pieces of functionality.
We propose that P4 be extended by borrowing modular-
ity constructs such as lexical scoping and local variables
from main-stream languages. One way to achieve this would
be to structure all packet-processing functionality (parsing,
deparsing, compound actions, match-action processing) as
functions. The body of each function would only be allowed
to access either its arguments or local variables, and nothing
else.

7. RELATED WORK

7.1 Programmable forwarding planes
There has been recent interest in programmable forward-

ing planes for switches. The RMT architecture [30] is one ex-
ample, and commercial offerings such as Intel’s FlexPipe [7],
Cavium’s Xpliant [25], and Cisco’s Doppler [4] feature simi-
lar programmable pipelines while also providing high perfor-
mance. Academic work in this area includes the Tiny Packet
Program interface [39] for low-latency network monitoring
and control, PLUG [33], which provides a programmable set
of lookup modules, and a proposal to add an FPGA for pro-
grammable queue management and scheduling [46]. Another
approach to forwarding-plane programmability uses general-
purpose processors [44, 35, 41]. Regardless of the underlying
substrate (reconfigurable hardware, FPGA, or CPU), a uni-
versal high-level language such as P4 would make it easier
to program different targets, without worrying about target-
specific details.

7.2 Packet-processing languages
Protocol-Oblivious Forwarding (POF) [47, 18] is an ongo-

ing project that shares many of the same goals as P4. POF
treats packet headers as scratchpads that are accessed using
{offset, length} tuples, resulting in a low-level programming
model resembling assembly language. While this consider-
ably simplifies the compiler, it shifts the burden of packet
parsing to the programmer. P4 provides a high-level pro-
gramming model that represents both packet headers and
parsing in the language and generates the packet parser au-
tomatically.

packetC [36] is a domain-specific language for packet pro-
cessing. packetC is more expressive than P4 and allows

access to packet payloads, while P4 only permits header
inspection and modification. Further, packetC also allows
stateful processing by providing synchronization constructs
for globally shared memory. P4’s abstract switch model as-
sumes shared state (such as counters) is local to a table and
accessible only to the current packet. These differences stem
from a difference in focus: P4 targets reconfigurable hard-
ware platforms with limited flexibility and aggregate switch-
ing performance that exceeds 1 Terabit per second, while
packetC focuses on NPUs, FPGAs, and software switches
with much more flexibility and lower performance.

PX [31] is a packet-processing language that targets FPGA
platforms such as the Xilinx Virtex-7 [22]. PX converts
a high-level declarative specification of packet parsing and
editing to a Register-Transfer Level (RTL) description of the
target substrate in Verilog or VHDL. This RTL description
is then further compiled to an FPGA bitstream by a stan-
dard FPGA tool chain. P4’s abstractions for packet parsing
and processing share some similarity with those of PX. How-
ever, by emitting RTL as its output, PX restricts itself to
FPGA platforms, while P4 can span a variety of targets.

8. CONCLUSIONS
This paper presents a case study of using P4 to express

the forwarding plane of a data-center switch. Our findings
suggest that the language can capture a good amount of
data-center switching functionality. Beyond this particular
case study, expressing forwarding behavior in a high-level
language has an important practical benefit: the function-
ality of the switch can be dictated by the network operator
and not the switch vendor. Operator requirements change
frequently and allowing the operator to change switching
functionality improves responsiveness. Further, operators
are no longer tied to a specific set of protocol formats that
are supported by the vendor.

Architecturally, the approach of programming switches in
a high-level language reduces switches to their core function-
ality of bit-stream processing. How this bit stream is turned
into headers, then parsed into packets, and then processed
against state resident on the switch is completely up to the
switch operator. If this approach bore fruit, the switch’s
functionality would only be limited by the programmer’s
imagination, much like programming on CPUs today. We
wouldn’t have to restrict ourselves to a “dumb network” [45]
and the network could benefit from innovation just like end
hosts have in the past.

That said, much work remains before programmable for-
warding planes become commonplace. This study explores
one particular application: the data-center switch. Whether
P4 can express the forwarding plane of other switching equip-
ment such as network interface cards, wireless access points,
cellular base stations, and core routers is a question we leave
for future work. We hope to have convinced readers that the
approach of a programmable forwarding plane is a fruitful
one. We encourage readers to extend our P4 program (avail-
able at http://git.io/sosr15-p4), write P4 programs for new
use cases, and propose language improvements.

Acknowledgments
We thank Antonin Bas for developing the software switch,
Leo Alterman for work on the P4 compiler front end, and
John Cruz for debugging DC.p4

http://git.io/sosr15-p4

9. REFERENCES
[1] Analysis of an Equal-Cost Multi-Path Algorithm.

https://tools.ietf.org/html/rfc2992.

[2] Apache Thrift - Home. https://thrift.apache.org/.

[3] The Arista 7124 FX as a High Performance Trade
Execution Platform. http://www.argondesign.com/
media/uploads/files/P8006-R-001d The Arista FX
Switch as an Execution Platform.pdf.

[4] Cisco highlights next big switch.
http://www.biztechafrica.com/article/
cisco-announces-next-big-switch/5448/#.
VP4mCYWltVZ.

[5] Configuring ERSPAN. http://www.cisco.com/c/en/
us/td/docs/ios-xml/ios/lanswitch/configuration/
xe-3s/lanswitch-xe-3s-book/lnsw-conf-erspan.html.

[6] High Capacity StrataXGS R©Trident II Ethernet
Switch Series. http://www.broadcom.com/products/
Switching/Data-Center/BCM56850-Series.

[7] Intel FlexPipe. http://www.intel.com/content/dam/
www/public/us/en/documents/product-briefs/
ethernet-switch-fm6000-series-brief.pdf.

[8] Intel Integrated Performance Primitives (Intel IPP) |
Intel Developer Zone.
https://software.intel.com/en-us/intel-ipp.

[9] IXP4XX Product Line of Network Processors.
http://www.intel.com/content/www/us/en/
intelligent-systems/previous-generation/
intel-ixp4xx-intel-network-processor-product-line.
html.

[10] Martian Address Filtering.
http://tools.ietf.org/html/rfc1812#section-5.3.7.

[11] Mellanox Products: SwitchX-2 Ethernet Optimized
for SDN. http://www.mellanox.com/page/products
dyn?product family=146&mtag=switchx 2 en.

[12] Network Virtualization using Generic Routing
Encapsulation.
https://msdn.microsoft.com/en-us/library/windows/
hardware/dn144775%28v=vs.85%29.aspx.

[13] Networking/SpecsAndDesigns.
http://www.opencompute.org/wiki/Networking/
SpecsAndDesigns#Switch Abstraction Interface.

[14] Oftest. http://www.openflowhub.org/display/OFTest/
OFTest+--+Validating+OpenFlow+Swtiches.

[15] Open vSwitch. http://openvswitch.org/.

[16] P4 Specification. http://p4.org/spec/p4-latest.pdf.

[17] P4.org. http://p4.org/.

[18] POForwarding. http://www.poforwarding.org/.

[19] Sdn / OpenFlow / Message Layer / Packetin /
Flowgrammable. http://flowgrammable.org/sdn/
openflow/message-layer/packetin/.

[20] Switch Abstraction Interface Specification v0.9. http:
//files.opencompute.org/oc/public.php?service=files&
t=24b68e105629caf910d9b3f2834d7e6a&download.

[21] Understanding Openflow: Packet-In is a Page Fault.
http://www.projectfloodlight.org/blog/2012/02/27/
packet-in-is-a-page-fault/.

[22] Virtex-7 FPGA Family. http://www.xilinx.com/
products/silicon-devices/fpga/virtex-7.html.

[23] Virtual Ethernet Interfaces.
http://openvz.org/Virtual Ethernet device.

[24] Virtual eXtensible Local Area Network (VXLAN): A

Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks.
https://tools.ietf.org/html/rfc7348.

[25] XPliantTMEthernet Switch Product Family.
http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html.

[26] M. Alizadeh, S. Yang, M. Sharif, S. Katti,
N. McKeown, B. Prabhakar, and S. Shenker. pFabric:
Minimal Near-optimal Datacenter Transport. In
SIGCOMM, 2013.

[27] W. Bai, K. Chen, H. Wang, L. Chen, D. Han, and
C. Tian. Information-Agnostic Flow Scheduling for
Commodity Data Centers. In NSDI, 2015.

[28] J. Bangert and N. Zeldovich. Nail: A Practical Tool
for Parsing and Generating Data Formats. In OSDI,
2014.

[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet
Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014.

[30] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN. In
SIGCOMM, 2013.

[31] G. Brebner and W. Jiang. High-Speed Packet
Processing using Reconfigurable Computing. Micro,
IEEE, 34(1):8–18, Jan 2014.

[32] D. Clark. The Design Philosophy of the DARPA
Internet Protocols. In SIGCOMM, 1988.

[33] L. De Carli, Y. Pan, A. Kumar, C. Estan, and
K. Sankaralingam. Plug: Flexible Lookup Modules for
Rapid Deployment of New Protocols in High-speed
Routers. In SIGCOMM, 2009.

[34] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm. In
SIGCOMM, 1989.

[35] M. Dobrescu and K. Argyraki. Software Dataplane
Verification. In NSDI, 2014.

[36] R. Duncan and P. Jungck. packetC Language for High
Performance Packet Processing. In 11th IEEE
International Conference on High Performance
Computing and Communications, 2009.

[37] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M.
Watson, A. W. Moore, S. Hand, and J. Crowcroft.
Queues Don’t Matter When You Can JUMP Them!
In NSDI, 2015.

[38] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software Defined
Wan. In SIGCOMM, 2013.

[39] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using Packets
for Low Latency Network Programming and Visibility.
In SIGCOMM, 2014.

[40] L. Jose, L. Yan, G. Varghese, and N. McKeown.
Compiling Packet Programs to Reconfigurable
Switches. In NSDI, 2015.

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.

https://tools.ietf.org/html/rfc2992
https://thrift.apache.org/
http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.argondesign.com/media/uploads/files/P8006-R-001d_The_Arista_FX_Switch_as_an_Execution_Platform.pdf
http://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/#.VP4mCYWltVZ
http://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/#.VP4mCYWltVZ
http://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448/#.VP4mCYWltVZ
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/lanswitch/configuration/xe-3s/lanswitch-xe-3s-book/lnsw-conf-erspan.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/lanswitch/configuration/xe-3s/lanswitch-xe-3s-book/lnsw-conf-erspan.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/lanswitch/configuration/xe-3s/lanswitch-xe-3s-book/lnsw-conf-erspan.html
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.broadcom.com/products/Switching/Data-Center/BCM56850-Series
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://software.intel.com/en-us/intel-ipp
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://tools.ietf.org/html/rfc1812#section-5.3.7
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
http://www.mellanox.com/page/products_dyn?product_family=146&mtag=switchx_2_en
https://msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn144775%28v=vs.85%29.aspx
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface
http://www.openflowhub.org/display/OFTest/OFTest+--+Validating+OpenFlow+Swtiches
http://www.openflowhub.org/display/OFTest/OFTest+--+Validating+OpenFlow+Swtiches
http://openvswitch.org/
http://p4.org/spec/p4-latest.pdf
http://p4.org/
http://www.poforwarding.org/
http://flowgrammable.org/sdn/openflow/message-layer/packetin/
http://flowgrammable.org/sdn/openflow/message-layer/packetin/
http://files.opencompute.org/oc/public.php?service=files&t=24b68e105629caf910d9b3f2834d7e6a&download
http://files.opencompute.org/oc/public.php?service=files&t=24b68e105629caf910d9b3f2834d7e6a&download
http://files.opencompute.org/oc/public.php?service=files&t=24b68e105629caf910d9b3f2834d7e6a&download
http://www.projectfloodlight.org/blog/2012/02/27/packet-in-is-a-page-fault/
http://www.projectfloodlight.org/blog/2012/02/27/packet-in-is-a-page-fault/
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
http://openvz.org/Virtual_Ethernet_device
https://tools.ietf.org/html/rfc7348
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[42] B. Lantz, B. Heller, and N. McKeown. A Network in a
Laptop: Rapid Prototyping for Software-defined
Networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, 2010.

[43] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[44] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A Centralized “Zero-queue”
Datacenter Network. In SIGCOMM, 2014.

[45] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end

Arguments in System Design. ACM Trans. Comput.
Syst., 2(4):277–288, Nov. 1984.

[46] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No Silver Bullet: Extending SDN to
the Data Plane. In Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, HotNets-XII,
2013.

[47] H. Song. Protocol-oblivious Forwarding: Unleash the
Power of SDN Through a Future-proof Forwarding
Plane. In HotSDN, 2013.

[48] X. Wang, N. Zeldovich, M. F. Kaashoek, and
A. Solar-Lezama. Towards Optimization-safe Systems:
Analyzing the Impact of Undefined Behavior. In
SOSP, 2013.

	Introduction
	P4 primer
	A P4 development environment
	A data-center switch in P4
	Features captured by the original language
	Language Changes
	Features that are not yet modeled in P4

	Lessons learned
	What P4 gets right
	Avenues for improvement

	Looking forward
	Architecture-language separation
	More complete language semantics
	Better support for modularity

	Related Work
	Programmable forwarding planes
	Packet-processing languages

	Conclusions
	References

