
Tiga: Accelerating Geo-Distributed Transactions with
Synchronized Clocks

Jinkun Geng
★
*, Shuai Mu

★
, Anirudh Sivaraman

†
, Balaji Prabhakar

‡

★Stony Brook University, †New York University, ‡Stanford University

Abstract
This paper presents Tiga, a new design for geo-replicated

and scalable transactional databases such as Google Span-

ner. Tiga aims to commit transactions within 1 wide-area

roundtrip time, or 1 WRTT, for a wide range of scenarios,

while maintaining high throughput with minimal computa-

tional overhead. Tiga consolidates concurrency control and

consensus, completing both strictly serializable execution

and consistent replication in a single round. It uses synchro-

nized clocks to proactively order transactions by assigning

each a future timestamp at submission. In most cases, transac-

tions arrive at servers before their future timestamps and are

serialized according to the designated timestamp, requiring

1 WRTT to commit. In rare cases, transactions are delayed

and proactive ordering fails, in which case Tiga falls back to

a slow path, committing in 1.5–2 WRTTs. Compared to state-

of-the-art solutions, Tiga can commit more transactions at

1-WRTT latency, and incurs much less throughput overhead.

Evaluation results show that Tiga outperforms all baselines,

achieving 1.3–7.2× higher throughput and 1.4–4.6× lower

latency. Tiga is open-sourced at https://github.com/New-

Consensus-Concurrency-Control/Tiga.

ACM Reference Format:
Jinkun Geng

★
*, Shuai Mu

★
, Anirudh Sivaraman

†
, Balaji Prabhakar

‡
★Stony Brook University, †New York University, ‡Stanford Univer-
sity . 2025. Tiga: Accelerating Geo-Distributed Transactions with

Synchronized Clocks . In ACM SIGOPS 31st Symposium on Op-
erating Systems Principles (SOSP ’25), October 13–16, 2025, Seoul,
Republic of Korea. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3731569.3764854

1 Introduction
Distributed online transaction processing (OLTP) sys-

tems [21, 26, 28, 38–40, 51, 52, 59, 60, 68, 71, 73, 74, 77, 78]

are fundamental to cloud infrastructures and online services.

These systems partition data to scale and replicate data across

different datacenters to tolerate server and datacenter out-

ages. Data accesses are guaranteed to be strongly consistent

for easy usage. Replication is linearizable, and operations are
wrapped in transactions with strict serializability—together
providing users with the illusion of having a single-copy,

single-threaded storage with unlimited capacity. To provide

this fault-tolerant transaction guarantee, the system uses

∗
Part of the work was done at Stanford University.

a concurrency control protocol (e.g., two-phase locking/-

commit [24]) to isolate transactions from each other, and a

consensus protocol (e.g., Multi-Paxos [43]) to replicate data.

Both concurrency control and consensus protocols are in-

herently complex and impose significant performance over-

head. The overhead includes extra computation (e.g., locking)

and additional message roundtrips on the critical path to com-

mit transactions. These additional message roundtrips are

especially costly in geo-replicated settings. It may require

multiple wide-area roundtrip times (WRTT) to commit a

transaction, which significantly impacts latency. Prior work

has attempted to reduce the latency overhead, but they often

require techniques with substantial computational overhead

(e.g., dependency tracking and cycle detection [56, 60]), thus

reducing throughput. Additionally, the optimal latency is

typically achievable only for a subset of cases, such as when

transactions are commutative.

We ask this question in the paper: Can we design a fault-
tolerant transaction protocol that commits more transactions in
1WRTT with less overhead? Our answer is Tiga, a lightweight
and low-latency protocol based on synchronized clocks. For a

wide range ofworkloads and deployment settings (e.g., server

co-location), Tiga can commit transactions in 1 WRTT. Tiga

uses an efficient timestamp ordering approach to achieve

strong consistency, which yields 2.0–4.5× higher throughput
than the other protocols (e.g., Janus/Detock) that rely on in-

tensive graph algorithms for the same consistency guarantee.

Tiga achieves this goal through three key design decisions:

Consolidating consensus and concurrency control. Both
concurrency control and consensus protocols aim to estab-

lish a consistent order across servers, with one handling

replicas and the other managing shards. When a system

stacks two protocols together, it essentially overpays for

achieving the same goal twice. To achieve 1-WRTT latency,

as pointed out by previous works [56, 76], it is necessary

to consolidate these two layers of protocols. Given this in-

sight, Tiga is designed as a consolidated protocol that unifies

concurrency control and consensus.

Proactive ordering with synchronized clocks. Tiga uses

timestamps to order transactions, which is a classic light-

weight approach in concurrency control [69]. Using synchro-

nized clocks, Tiga measures the one-way delay (OWD) from

the transaction’s sender (i.e., coordinator) to every participat-

ing server and assigns the transaction a future timestamp at

1

https://github.com/New-Consensus-Concurrency-Control/Tiga
https://github.com/New-Consensus-Concurrency-Control/Tiga
https://doi.org/10.1145/3731569.3764854
https://doi.org/10.1145/3731569.3764854

submission. The transaction is expected to arrive at all partic-

ipating servers before the future timestamp. This timestamp

includes a headroom—an estimate of transmission delay to

reach every participating server, which is calculated based

on the measured OWDs (§3.1). The headroom effectively

masks the heterogeneous latency from the sender to each

server: Even if the transaction arrives early at some servers

before its timestamp, the servers will hold the transactions

until their local clocks pass the timestamp, and then process

the transactions based on their timestamp order. This order-

ing approach reduces the occurrence of inconsistent arrival

orders at different servers, making Tiga’s fast path more

stable and allowing more transactions to be committed with

low latency. Tiga leverages the significant improvements in

clock synchronization accuracy over recent decades. Today’s

clock synchronization algorithms (e.g., Huygens [32]) can

achieve microsecond accuracy across data centers and scale

robustly [17, 19]. This enables Tiga to extract more perfor-

mance, as the clock inaccuracy (a few microseconds) is often

negligible compared to the headroom (10s of milliseconds).

Minimizing server coordination overhead. Tiga’s proactive
ordering is best-effort: Transactions can still arrive later

than the predicted timestamps—e.g., due to packet drop

and retransmission—thereby violating the consistency re-

quirements. Such violations can be subtle and may go un-

detected by clients or coordinators (Figure 15), unless they

communicate with all shards during every transaction com-

mit, which is undesirable in practice. To guarantee correct-

ness, Tiga carefully designates one leader per shard, and

coordinates these leaders to agree on a timestamp for ev-

ery transaction. (1) In common deployments with full repli-

cation [7, 13, 20, 38, 49, 53, 56, 59, 62], the leaders can be

co-located in one geographic region and incur negligible

LAN overhead. This setup enables a 1-WRTT fast path to

commit most transactions. (2) In more general deployments

with partial replication, leaders cannot be co-located in a

single geographic region and their coordination introduces

WAN overhead. Tiga still allows commutative transactions

to be committed via the 1-WRTT fast path. The extra WAN

overhead arises only when multiple conflicting transactions

are submitted concurrently: the later transactions will be

blocked until the leaders reach timestamp agreement for

the earlier ones. If the blocking occurs, it typically costs

0.5 WRTT, leading to a graceful performance degradation

compared with the full-replication setup.

Correctness challenge. Building a consolidated protocol like
Tiga is non-trivial, as both consensus and concurrency con-

trol protocols are inherently complex. A major challenge is

that it is error-prone. While timestamp-based consensus pro-

tocols can achieve linearizability, timestamp-based concur-

rency control protocols usually only achieve serializability,

not strict serializability—i.e., they drop the external consis-

tency guarantee provided by linearizability. This is summa-

rized as “timestamp inversion” in recent work [50]. We care-

fully designed Tiga to avoid timestamp inversion. We have

formally proved the correctness of Tiga in our technical re-

port [30] and the TLA+ specification is available online [29].

Evaluation. We implement Tiga as a complete protocol

that includes both normal processing and failure recovery.

We compare Tiga to layered protocols (2PL/OCC+Paxos,

NCC, Calvin+ and Detock) and consolidated protocols (Tapir

and Janus) in Google Cloud, using a micro benchmark (Mi-

croBench) and an industry-standard benchmark (TPC-C).

We find:

(1) Under MicroBench, when contention is low (skew

factor=0.5), Tiga outperforms all baselines by 1.3–7.2× in

throughput and by 1.4–4.6× in median latency at close to

their respective saturation throughputs. As we fix the load

and increase the skew factor, all baselines degrade except

Calvin+, but Calvin+ incurs 33% higher latency than Tiga.

(2) Under TPC-C, which contains both one-shot and multi-

shot (interactive) transactions, 2PL/OCC+Paxos, Tapir and

NCC yield very low throughput (1K–2K txns/s). Tiga out-

performs the remaining baselines by 1.6-3.5× in throughput

and 1.5-3.7× in median latency.

(3) Tiga’s performance varies when using different clocks.

Tiga can achieve high performance by using physical clocks

if their synchronization error is negligible compared to the

cross-region message delay (tens to hundreds of ms). Based

on our evaluation, off-the-shelf clock synchronization ser-

vices (e.g., chrony in Google Cloud) can already satisfy this

requirement (with < 5ms synchronization error).

2 Background and Intuition
Common setup.Distributed OLTP systems are typicallymod-

eled as a sharded key-value store. Each shard is replicated

across multiple geographic regions. We assume a partial

replication setup: different shards can be replicated to dif-

ferent sets of regions. For simplicity, we often use examples

with a full replication setup: each region contains a replica

from every shard, but this is not necessary.

The system has three roles in transaction processing: client,
coordinator, and server. A client sends the transaction re-

quest to a coordinator. The coordinator communicates with

servers to commit the transaction and returns the execution

result to the client. We primarily focus on one-shot transac-

tions, which are written as a stored procedure to be executed

on servers. In addition, we incorporate the decomposition

technique [70] to support interactive transactions (details

explained in our technical report [30]).

Necessity of strict serializability. Strict serializability re-

quires that transactions’ executions are equivalent to a serial

execution on a single-copy system, and the transactions’

executions also reflect the real-time ordering. While some

2

Region-1

Region-2

𝑆𝑋
1

𝑆𝑌
1

𝑆𝑋
2

𝑆𝑌
2

Coord-2

Coord-1

Inconsistent
server states

Multicast 𝑇2

𝑇1

𝑇2

Multicast 𝑇1

𝑇1 𝑇2

𝑇2

𝑇2

𝑇2

𝑇1

𝑇1

𝑇1

Get replies

Get replies

Fail to commit

Fail to commit

𝑇1𝑇2
𝑇1 𝑇2

𝑇1𝑇2

𝑇2

𝑇2

𝑇2

𝑇1

𝑇1

𝑇1

Figure 1. Tapir fails to commit transactions in the fast

path because 𝑇1 and 𝑇2 arrive at servers in different

orders, causing inconsistent server states.

Region-1

Region-2

𝑆𝑋
1

𝑆𝑌
1

𝑆𝑋
2

𝑆𝑌
2

Coord-2

Coord-1

𝑇2

Multicast 𝑇1

Multicast 𝑇2

Time to release 𝑇1
𝑇1

𝑇1

𝑇1

𝑇1

Time to release 𝑇2
𝑇2

𝑇2

𝑇2

𝑇2

Get replies

Get replies

Commit 𝑇1

Commit 𝑇2

Consistent
server states

𝑇1

𝑇1

𝑇1

𝑇1

𝑇1

𝑇2

𝑇2

𝑇2

𝑇2

𝑇2

𝑇2 𝑇1

𝑇2 𝑇1

Figure 2. Tiga rectifies inconsistent arrival order based
on synchronized clocks so that servers process 𝑇1 and

𝑇2 in the same order, and commit both in the fast path.

systems [23, 75] choose to sacrifice real-time ordering for

performance and only provide serializability, we find that

non-strict serializability is insufficient for many practical

cases. For example, (1) Banking systems: When transaction

processing does not obey real-time ordering, account bal-

ances may appear inconsistent to clients; a withdrawal might

not be reflected immediately, potentially leading to over-

drafts or business errors. (2) Booking/ticket systems: Late

booking orders may succeed over earlier ones, thereby caus-

ing unfairness among users. (3) Locking service: Clients may

observe outdated lock states and perform unsafe operations

under the false assumption of ownership.

Therefore, we target strict serializability. Meanwhile, we

aim to achieve fault tolerance, which guarantees strict seri-

alizability for all committed transactions in the presence of

a minority of server/datacenter failures of any shard.

Consolidated concurrency control and consensus, and 1-
WRTT fast path. To achieve strict serializability and fault

tolerance, we need concurrency control and consensus pro-

tocols to coordinate the servers. Although each category of

protocols is usually studied separately, it is recognized that

they share the same goal—to achieve consistent ordering

among all servers [35]. Prior work has proposed consolidat-

ing the two types of protocols into a single layer [56, 76], to

reduce redundant coordination overhead. In particular, the

commit latency in geo-replicated systems can be reduced

from several WRTTs to 1–2 WRTTs by the consolidation.

Existing work has proposed having a 1-WRTT fast path

for commutative transactions, i.e., transactions that do not

conflict with each other. If transactions conflict, the fast path

will fail, and more WRTTs are required to commit the trans-

action. Consider Figure 1, which shows the timestamp-based

protocol Tapir [76] and illustrates the problem. The example

has 2 coordinators and 2 shards, 𝑋 and 𝑌 . Both shards are

replicated in 2 regions, Region-1 and Region-2 (technically

a 3rd region is needed to tolerate failures; this is omitted to

simplify discussions). Each coordinator multicasts a trans-

action (𝑇1/𝑇2) to all servers. 𝑇1 and 𝑇2 arrive at the 4 servers

in different orders. This inconsistent ordering will form a

cyclic dependency that is propagated across servers. Neither

𝑇1 nor 𝑇2 can commit in 1 WRTT (fast path). Thus, Tapir

needs extra RTTs, which are also WRTTs if coordinators and

servers are in different regions, to resolve the cycle.

We realize that the fast paths of Tapir and the others

(e.g., Janus, Detock, and so on) fail under conflicts because

these protocols optimistically process transactions based on

their arrival order, but transactions’ arrival order on different

servers can often be different in geo-replicated settings [31].

Intuition: proactive ordering with timestamps. Instead of

being optimistic about arrival orders, Tiga chooses the proac-
tive ordering approach—Tiga lets the coordinators predict a

timestamp for transactions to arrive before multicast. Servers

serialize transactions in their timestamp order. The times-

tamps are generated with synchronized clocks and indicate

an approximate serialization point in the global ordering.

When clocks are used to serialize transactions, their ac-

curacy directly impacts system performance. Classic clock

synchronization techniques (e.g., NTP [54]) used to suffer

high synchronization errors (10s of milliseconds) [2], which

limited the effectiveness of protocols relying on synchro-

nized clocks.

In recent years, however, clock synchronization accuracy

has been improved substantially in practice [8, 32, 47, 57].

For example, Huygens [32] has become generally deploy-

able in the public cloud and can yield microsecond- or even

nanosecond-level synchronization errors [17, 19]. In our eval-

uation, even the default NTP service of Google Cloud (i.e.,

chrony) [34] can steadily converge to 4.54ms error thanks to

well-built cloud infrastructure. This has opened up new op-

portunities for using physical clocks to serialize transactions:

Multiple servers can share a common timeline given the high

accuracy of the synchronized clocks. When receiving the

transaction, these servers can take actions simultaneously

according to its timestamp. However, it is worth noting that

even though the clock synchronization accuracy has been

greatly improved, there is no guarantee of a deterministic
error bound. Even for advanced schemes like Huygens, the

worst-case error can still go arbitrarily large in theory. There-

fore, a desirable protocol should still assume the clock is

loosely synchronized, following Liskov’s design principle to

“depend on clock synchronization for performance but not

for correctness” [48].

3

Figure 2 illustrates Tiga’s idea with the same example.

When the coordinator multicasts 𝑇1 (or 𝑇2), it proactively

assigns a future timestamp to its transaction, and the times-

tamp is decided by summing up the sending time and the

expected delay from the coordinator to enough (i.e., a super

quorum, §3.1) participating servers to commit the transac-

tion. Servers receiving the transactions will hold them until

the local clocks pass the transactions’ timestamps. Thus, all

participating servers can consistently process 𝑇1 and 𝑇2, and

commit both transactions.

Challenges. While having synchronized clocks can create

favorable conditions for Tiga’s fast path performance, us-

ing the simple rationale we just demonstrated itself is not

sufficient to guarantee system correctness. The reason is

three-fold. First, timestamps are not assumed to be always

accurate. Clocks can be out of sync, or messages can take

longer than predicted to arrive. Servers need extra mecha-

nisms to deal with receiving transactions that are supposed

to be processed in the past. Second, failures such as crashes

and network partitions make it challenging to design a safe

protocol that is resilient to corner cases such as recovering a

dangling timestamp while the original coordinator has an

unknown status (could be either crashed or just slowed).

In such cases, the leader is holding the transaction with

its timestamp, but the leader becomes isolated due to the

network partition. Meanwhile, a new leader is elected and

decides a new timestamp for the transaction. As a result,

when the old leader becomes reconnected to the system, it

must abandon the old timestamp for the transaction. Third,

linearizability is a local property that is defined for a single

shard but strict serializability is not [1, 37], which leads to

the fact that a simple timestamp ordering solution is only

serializable, losing the “strict” prefix which covers the ex-

ternal consistency or simply the linearizability part. This

is also known as the timestamp inversion pitfall by recent

work [50]. Extra cross-shard coordination steps need to be

carefully designed to achieve correctness.

3 Tiga Design
Figure 3 illustrates the workflow of Tiga. We next follow the

workflow to explain the protocol details. Figure 4 summarizes

the state variables and data structures maintained at each

Tiga server, and Algorithm 1 sketches the server’s action in

response to different events. We refer to these state variables

and actions during our explanation.

3.1 Timestamp Initialization
The protocol starts with the coordinator multicasting trans-

actions to servers, i.e., 1 in Figure 3. When multicasting

the transaction 𝑇 , the coordinator needs to predict a future

timestamp for 𝑇 , so that 𝑇 can arrive at all involved servers

Region-2

Region-1

Region-0

𝑆0
2

𝑆1
2

𝑆0
1

𝑆1
1

𝑆1
0

𝑆0
0

Coordinator
1

2

3

4

5

1 Timestamp initialization (§3.1) 2

Timestamp agreement (§3.5)3

Optimistic execution (§3.3)

4Quorum check of fast path (§3.4)

5 Log synchronization (§3.7) 6 Quorum check of slow path (§3.7)

0.5 WRTT

0.5 WRTT 0.5 WRTT
6

0.5 WRTT

Leaders

0.5~1 WRTT

Figure 3.Workflow of Tiga. 𝑆𝑟𝑠 indicates the server’s replica-
id is 𝑟 and shard-id is 𝑠 . The green solid bars 2 indicate

that servers optimistically execute the transaction. However,

servers can only know whether the execution is valid after

timestamp agreement 4 . If the execution turns out to be

invalid, servers will revoke the previous execution and re-

execute the transaction (see Case-3 in §3.5).

• shard-id— shard identifier (0, 1, · · · ,𝑚 − 1).
• replica-id— replica identifier (0, 1, · · · , 2𝑓).
• g-view— the global view, indexed by an integer

which is incremented after every view change.

• l-view— the local view, indexed by an integer

which is incremented or remain unchanged af-

ter every view change.

• status— one of normal, viewchange, or re-

covering.

• pq— a priority queue used to hold incoming

transactions, and release transactions according

to their timestamp order.

• log— a list of transactions, which are appended

in the order of their timestamps agreed upon

by the participating shards.

• sync-point— the log position up to which this

server’s log is consistent with its leader (i.e., the

leader that has the same shard-id as this server).

• commit-point— the log position up to which the

server has checkpointed the state.

Figure 4. Local state of Tiga servers.

just before the timestamp. The future timestamp 𝑡 is calcu-

lated by adding the headroom to the transaction’s sending

time 𝑡𝑠𝑒𝑛𝑑 . We next describe how we estimate the headroom.

The headroom estimation is based on the measurement

of the one-way delays (OWDs) between the coordinator

and the servers. We use 𝐶 to represent the coordinator, and

use 𝑆𝑟𝑠 to represent a server whose replica-id is 𝑟 and shard-
id is 𝑠 . We use 𝑂 (𝐶, 𝑆𝑟𝑠) to represent the OWD from 𝐶 to

4

Algorithm 1 Server action

1: upon 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡𝑥𝑛, 𝑇 do
2: if conflict-detection(𝑇)=OK then 𝑝𝑞.insert(𝑇)
3: else if am-leader() then ⊲ Only leaders can update𝑇 .𝑡

4: 𝑇 .𝑡 ← clock-time()
5: 𝑝𝑞.insert(𝑇)
6: upon 𝑐𝑙𝑜𝑐𝑘 𝑡𝑖𝑚𝑒 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔 do ⊲ Periodically check the clock time

7: 𝑛𝑜𝑤𝑇𝑖𝑚𝑒 ← clock-time()
8: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇𝑥𝑛𝑠 ← []

⊲ Enumerate txns based on timestamp order

9: for𝑇 ∈ pq do
10: if 𝑇 .𝑡 > 𝑛𝑜𝑤𝑇𝑖𝑚𝑒 then break ⊲ 𝑇 has not expired

11: if �𝑇 ′ ∈ 𝑝𝑞 : 𝑇 ′ .𝑡 < 𝑇 .𝑡 and𝑇 ′ conflicts with𝑇 then
12: releaseTxns.append(𝑇)
13: for𝑇 ∈ releaseTxns do
14: ∀ key ∈ T.readSet, rMap[key]←𝑇 .𝑡

15: ∀ key ∈ T.writeSet, wMap[key]←𝑇 .𝑡 ⊲ For conflict detection

16: if am-leader() then
17: 𝑟𝑒𝑡 ← execute(𝑇) ⊲ Only leaders execute𝑇

18: ℎ𝑎𝑠ℎ = calculate-hash(𝑙𝑜𝑔)
19: send-fast-reply(𝑇 , ℎ𝑎𝑠ℎ, 𝑟𝑒𝑡)

⊲ 𝑡𝑆𝑒𝑡 contains𝑇 ’s timestamps used by each leader

20: 𝑡𝑆𝑒𝑡 ←timestamp-agreement(𝑇)

21: if 𝑇 .𝑡 = max{𝑡 : 𝑡 ∈ 𝑡𝑆𝑒𝑡 } then
22: if 𝑡𝑆𝑒𝑡 .size()>1 then ⊲ Some leaders used incorrect𝑇 .𝑡

⊲ After completing second round, leaders agree on𝑇 .𝑡

23: timestamp-agreement(𝑇)

24: Append𝑇 to 𝑙𝑜𝑔 and syncs𝑇 .𝑡 with followers

25: pq.erase(T)
26: else ⊲ This leader used smaller timestamp

27: revoke-execution(𝑇) ⊲ Previous execution is revoked

28: 𝑇 .𝑡 ← max{𝑡 : 𝑡 ∈ 𝑡𝑆𝑒𝑡 }
29: pq.reposition(𝑇)
30: else ⊲ Follower sends fast-reply without execution result

31: send-fast-reply(𝑇 , ℎ𝑎𝑠ℎ, 𝑛𝑢𝑙𝑙)

32: pq.erase(T)
33: upon 𝑓 𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ′𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 log-sync,𝑚𝑠𝑔 do
34: Update log to keep consistent with leader’s log
35: Advance follower’s sync-point
36: send-slow-reply(𝑇)

𝑆𝑟𝑠 . These OWDs can be easily measured since the clocks

have been synchronized among coordinators and servers.

Huygens achieves clock synchronization errors of only a few

microseconds (§5.7), which are negligible compared to WAN

OWDs (tens to hundreds of milliseconds), thereby enabling

accurate OWD measurement.

Assume that 𝑇 will be submitted to𝑚 shards, and shard-
ids are 0, · · · ,𝑚 − 1. 𝐶 will assign a future timestamp for

𝑇 , by adding the headroom to its sending time 𝑡𝑠𝑒𝑛𝑑 . The

size of the added headroom will decide how likely 𝑇 can be

committed in the fast or slow path.

To commit𝑇 via the fast path, its future timestamp 𝑡 should

be sufficiently large for 𝑇 to reach at least a super quorum

(1 + 𝑓 + ⌈𝑓 /2⌉) of replicas in each shard.

𝑡 = 𝑡𝑠𝑒𝑛𝑑 + max

0≤𝑠<𝑚
max

𝑟 ∈𝑆𝑄𝑠

𝑂 (𝐶, 𝑆𝑟𝑠) + Δ

𝑆𝑄𝑠 represents a super quorum of replicas from the shard

(shard-id is 𝑠) that are closest to 𝐶 , i.e., the replicas with

smaller OWDs to𝐶 than the remaining replicas in the shard.

We choose Δ = 10𝑚𝑠 in our implementation so that the

headroom added to 𝑡𝑠𝑒𝑛𝑑 is slightly larger than the OWDs of

the super quorum. The necessity of a super quorum (rather

than a simple quorum of 𝑓 + 1 servers) for fast path will be

explained later in §3.4.

3.2 Conflict Detection and Timestamp Update
On each server, Tiga maintains a priority queue (denoted

𝑝𝑞 in Algorithm 1) to buffer transactions and release them

according to their timestamp order. Given a transaction 𝑇 ,

the server performs conflict detection (line 2 in Algorithm 1)

to decide whether 𝑇 can be accepted into 𝑝𝑞.

Conflict detection. The server checks𝑇 ’s timestamp and will

not accept it into 𝑝𝑞 if 𝑝𝑞 has already released another trans-

action 𝑇 ′, which has a larger timestamp and has read-write

or write-write conflict with 𝑇 on the same keys. Since trans-

actions are written as (or can be decomposed as) one-shot

stored procedures, the server knows their read/write sets be-

fore execution. Thus, conflict detection can be implemented

very efficiently: The server maintains two maps (𝑟𝑀𝑎𝑝 and

𝑤𝑀𝑎𝑝). Both maps associate every data item (key) of the key-

value store with a timestamp. When 𝑇 ′ is released from 𝑝𝑞

(the release conditions will be explained in §3.3), the server

uses 𝑇 ′’s timestamp to update the timestamp of every key

that falls in 𝑇 ′’s read/write set (line 14–15 in Algorithm 1).

When 𝑇 arrives, the server directly compares 𝑇 ’s timestamp

with the recorded timestamps of keys that 𝑇 will read/write.

𝑇 will be accepted into 𝑝𝑞 if its timestamp is larger than

the timestamps of all conflicting transactions that have been

released from 𝑝𝑞 (line 1–2).

Not every transaction can be accepted into 𝑝𝑞 after con-

flict detection. When 𝑇 arrives late at a leader server due to

network delay or packet loss, its timestamp may be too small

to be accepted into 𝑝𝑞. In such cases, the leader updates 𝑇 ’s

timestamp to the local clock time (line 4), after which 𝑇 can

enter the leader’s queue.

Followers, by contrast, do not perform timestamp updates.

If 𝑇 .𝑡 is smaller than acceptable for the queue, the follower

holds 𝑇 and waits for synchronization instructions from the

leader in the slow path (§3.7, line 33–36 in Algorithm 1).

3.3 Optimistic Execution
For each transaction𝑇 in the queue 𝑝𝑞, followers refer to the

local clock to determine when to release it. Once the local

time surpasses𝑇 .𝑡 , the follower releases𝑇 without executing

it: 𝑇 is removed from the queue and then appended to the

log list. After that, the follower sends a fast-reply to the

coordinator to perform a quorum check (§3.4).

Leaders, on the other hand, must execute transactions

before releasing them. To minimize latency (1 WRTT), lead-

ers optimistically execute transactions without coordination.

5

Periodically, the leader refers to its local clock to identify ex-
pired transactions (i.e., transactions whose timestamps have

been passed by the current clock time) in its queue. It checks

these transactions in timestamp order to decide whether

each can be optimistically executed. When 𝑇 has reached

the head of the queue without any conflicting transactions

ahead, 𝑇 can be executed. However, 𝑇 will remain at the

head of the queue after execution.

After executing𝑇 , the leader sends a fast-reply to the coor-

dinator, including the execution results. 𝑇 stays at the head

of the leader’s queue to undergo timestamp agreement (see

§3.5). After that,𝑇 is either released (line 25) or repositioned

in the queue with a larger timestamp (line 29).

Before 𝑇 can be released, the leader/follower records 𝑇 ’s

timestamp with its read set and write set (line 14-15) for

subsequent conflict detection (§3.2, line 2 in Algorithm 1).

The follow-up transaction is no longer acceptable into the

queue if it conflicts with 𝑇 but has a smaller timestamp.

3.4 Quorum Check of Fast Path
A server’s fast-reply regarding transaction𝑇 includes a hash

value of the log list to represent its state before 𝑇 . The

hash of the log list is computed as the bitwise exclusive-or

(XOR) of the hashes of all its entries. This allows the server

to incrementally compute the hash. When adding/delet-

ing a log entry 𝑒 , the new hash is computed as 𝐻𝑛𝑒𝑤 =

𝑋𝑂𝑅(𝐻𝑜𝑙𝑑 , ℎ𝑎𝑠ℎ(𝑒)). We use a 160-bit SHA-1 hash and as-

sume hashes do not collide in practice. Note that applying

XOR on hashes does not make them vulnerable to colli-

sions [11, 12]. It is a commonly applied technique in systems

using incremental hash [4, 9, 10, 16, 27, 31]. Our technical re-

port [30] provides more details on how Tiga uses incremental

hash. In addition, the fast-reply includes 𝑇 ’s timestamp.

The coordinator receives 𝑇 ’s fast-replies from all servers.

𝑇 is considered fast-committed on a shard if, from this shard,

the coordinator receives a super quorum of fast-replies that

have the same hash and timestamp for𝑇 . The super quorum

must satisfy two conditions: (1) it contains the leader, and

(2) its size is at least 1 + 𝑓 + ⌈𝑓 /2⌉. If these are met, the

coordinator uses the optimistic results in the leaders’ replies

as 𝑇 ’s execution results on this shard.

The reason that Tiga’s fast path requires a super quorum

(1+ 𝑓 + ⌈𝑓 /2⌉) instead of a simple quorum (𝑓 +1) is similar to

Fast Paxos [44]: Because the fast path omits leader–follower

communication, a simple quorum lacks sufficient informa-

tion for a new leader to distinguish committed from uncom-

mitted transactions. Consider the leader and 𝑓 followers

append 𝑇1 and 𝑇3 (𝑇1 → 𝑇3) in their log lists whereas the

other 𝑓 followers append 𝑇2 and 𝑇3 (𝑇2 → 𝑇3) at the same

positions of their log lists. Assuming the fast path only re-

quires a simple quorum, then 𝑇1 and 𝑇3 will be considered

committed. However, when the leader fails, both𝑇1 and𝑇2 ex-

ist among half of the remaining servers, thus the new leader

cannot know whether 𝑇1 → 𝑇3 or 𝑇2 → 𝑇3 is previously

committed. If the new leader mistakenly believes 𝑇2 → 𝑇3 is

previously committed, then𝑇3 will have a different execution

result compared to that before the crash.

If 𝑇 is fast-committed on all its involved shards, the coor-

dinator additionally checks whether leaders have consistent

timestamps for 𝑇 in their fast-replies, because some leaders

may have updated 𝑇 ’s timestamp whereas the others have

not. If all participating leaders have used the same timestamp

to execute 𝑇 , 𝑇 is committed in the fast path.

3.5 Timestamp Agreement
After 𝑇 ’s execution, the leaders need to verify whether the

execution is valid: all participating leaders should execute 𝑇

in the same timestamp order; otherwise, the execution may

violate strict serializability and should be revoked. To support

revoking, Tigamaintains multiple versions for each data item

(key). 𝑇 ’s optimistic execution creates new versions of data.

Once the server detects the execution is invalid, it erases

the corresponding data versions. Note that the revoking

operation is internal to Tiga, and does not cause application-

related rollback.

To check the validity of𝑇 ’s execution, leaders start a round

of message exchange. Each leader notifies the other partici-

pating leaders of its local timestamp 𝑇 .𝑡 . Then, each leader

collects the full set of 𝑇 ’s timestamps used by different lead-

ers, and computes the maximum as the agreed timestamp,

𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 . Since all leaders operate on the same timestamp

set, they deterministically compute the same 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 . The

subsequent actions depend on three possible cases:

Case-1: All timestamps match. This is the ideal case, which

takes only 0.5 WRTT (4 in Figure 3) for leaders to notify

each other. If every leader’s local timestamp equals 𝑇 .𝑡agreed,

the timestamp agreement succeeds immediately. Each leader

releases 𝑇 and then appends 𝑇 to its log.

Case-2: This leader used 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 , but the others did not.

In this case, the leader’s optimistic execution remains valid,

but some other leaders used smaller timestamps. To avoid

potential timestamp inversion (discussed in §3.6), the leader

cannot release 𝑇 immediately. Instead, it initiates a second

round of timestamp exchange (another 0.5WRTT) to confirm

that all leaders have updated𝑇 ’s timestamp to𝑇 .𝑡agreed. Once

confirmed, the leader proceeds as in Case-1. In this case, the

timestamp agreement 4 takes 1 WRTT in total.

Case-3: This leader used a timestamp smaller than 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 .

This indicates that the leader’s optimistic execution is invalid,

so it revokes 𝑇 ’s execution. Then, it updates 𝑇 ’s timestamp:

𝑇 .𝑡 ← 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 . After that, the leader initiates the second

round of timestamp exchange (another 0.5 WRTT) to notify

the other leaders. Since 𝑇 ’s timestamp changes to a larger

value,𝑇 will be repositioned in the leader’s queue. Eventually,

𝑇 will come to the head again, and then the leader will re-

execute 𝑇 with the agreed timestamp.

6

𝐿1 𝐿2

𝑐𝑙𝑜𝑐𝑘1 = 6, some txn has been released
with timestamp of 6

𝑐𝑙𝑜𝑐𝑘2 = 1

𝑇1 arrives with 𝑇1. 𝑡 = 4 𝑇1 arrives with 𝑇1. 𝑡 = 4

𝑇1 enters 𝑝𝑞 after timestamp update,
𝑇1. 𝑡 ← 7

𝑇1 enters 𝑝𝑞 with 𝑇1. 𝑡 = 4

𝑇2 arrives with 𝑇2. 𝑡 = 10 𝑐𝑙𝑜𝑐𝑘2 = 4, 𝑇1 is executed

𝑇2 enters 𝑝𝑞 with 𝑇2. 𝑡 = 10

𝑐𝑙𝑜𝑐𝑘1 = 7, 𝑇1 is executed

Send 𝑇1. 𝑡 to 𝐿2 Send 𝑇1. 𝑡 to 𝐿1

Receive 𝑇1. 𝑡 = 4 from 𝐿2

𝑇1. 𝑡 = 𝑇1. 𝑡𝑎𝑔𝑟𝑒𝑒𝑑 = max{4, 7}

𝑇1 ‘s execution is valid.

𝑇1 is released immediately

𝒄𝒍𝒐𝒄𝒌𝟏 = 10,𝑻𝟐 is executed, released
and committed in 𝑳𝟏’s shard

𝑻𝟑 is submitted with 𝑻𝟑. 𝒕 = 5

𝑇3 enters 𝑝𝑞 with 𝑇3. 𝑡 = 5

Receive 𝑇1. 𝑡 = 7 from 𝐿1

𝑇1. 𝑡 ← max{4, 7} = 7 > 4

𝑇1′s execution is invalid and revoked

𝑇1 is repositioned in 𝑝𝑞,
𝑇3 comes to the head of 𝑝𝑞

𝑐𝑙𝑜𝑐𝑘2 = 5, 𝑇3 is executed, released
and committed in 𝐿2’s shard

𝑐𝑙𝑜𝑐𝑘2 = 7, 𝑇1 is executed, released
and committed in 𝐿2’s shard

R
ea

l-T
im

e
O
rd
er
in
g

Figure 5. Illustration of timestamp inversion. With only one

round of message exchange between 𝐿1 and 𝐿2, 𝑇3 may be

submitted after𝑇2 is committed, leading to real-time ordering

𝑇2 → 𝑇3 that contradicts serializable order 𝑇3 → 𝑇1 → 𝑇2.

3.6 Avoiding Timestamp Inversion
Readers may wonder why the leader in Case-2, denoted 𝐿1,

cannot immediately release 𝑇 since this leader already used

the agreed timestamp for 𝑇 . The reason is the timestamp

inversion pitfall [50], which hurts correctness, in particu-

lar strict serializability. While 𝐿1 has confirmed it used the

proper timestamp𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 for𝑇 , the other leader(s), denoted

𝐿2, used a smaller timestamp 𝑇 .𝑡 < 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 , and 𝐿1 is un-

certain whether 𝐿2 has completed timestamp agreement and

updated 𝑇 .𝑡 to 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 . As a result, if 𝐿1 releases 𝑇 immedi-

ately, timestamp inversion may occur: After 𝐿1 has commit-

ted some transactions with timestamps larger than 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 ,

𝐿2 could still commit other transactions with smaller times-

tamps than 𝑇 .𝑡𝑎𝑔𝑟𝑒𝑒𝑑 .

Figure 5 shows a concrete sequence of events illustrating

how timestamp inversion occurs. 𝐿1 and 𝐿2 are the leaders

of two shards, and they process three transactions𝑇1,𝑇2 and

𝑇3. 𝑇1 is a multi-shard transaction that involves both 𝐿1’s

and 𝐿2’s shards.𝑇2 is only processed by 𝐿1’s shard;𝑇3 is only

processed by 𝐿2’s shard. The leaders’ clocks (i.e., 𝑐𝑙𝑜𝑐𝑘1 and

𝑐𝑙𝑜𝑐𝑘2) are badly synchronized.

𝐿1’s event sequence indicates the dependency relation

𝑇1 → 𝑇2 and 𝐿2’s event sequence indicates 𝑇3 → 𝑇1, so the

only valid serializable schedule is 𝑇3 → 𝑇1 → 𝑇2. However,

in real time, 𝑇3 starts after 𝑇2 has been completed, indicating

the real-time ordering relation 𝑇2 → 𝑇3, which contradicts

the serializable order.

The fundamental reason behind timestamp inversion lies

in the different guarantees of linearizability versus strict

serializability. Linearizability is a local property within each

shard—e.g., 𝐿1 only needs to ensure its followers in the same

shard use a consistent order between𝑇1 and𝑇2 with 𝐿1 itself,

and does not consider the ordering between𝑇2 and𝑇3, which

are processed by different shards. The same holds for 𝐿2. In

contrast, strict serializability enforces a global order across
shards. Although 𝑇2 and 𝑇3 do not directly conflict, they

both access data involved in𝑇1, forming a dependency chain

that induces a real-time order between them. This indirect

dependency is not captured by linearizability, but is essential

for preserving strict serializability.

To avoid timestamp inversion, when a leader notices it is

holding a different timestamp from the other leaders for a

transaction, it must ensure no other transactionswith smaller

timestamps (e.g., 𝑇3) can be committed later. Specifically in

Figure 5, 𝐿1 should release 𝑇1 after it confirms that 𝐿2 has

updated 𝑇1 with the agreed timestamp, and 𝑇1 has come to

the head of the queue again (after repositioning). At this

point, (1) 𝑇3 has been executed on 𝐿2 whereas 𝑇2 remains

in 𝐿1’s queue, because 𝑇1 is at the head of the queue and

blocking 𝑇2 from execution. (2) 𝐿2 will no longer allow the

other transactions (which conflict with𝑇1) to enter its queue

with smaller timestamps than 𝑇1’s agreed timestamp (𝑇1.𝑡 =

7). Thus, the second round of timestamp agreement rules

out any real-time ordering violations that would otherwise

conflict with the serializable schedule. We include the proof

in our technical report [30].

In contrast to the leaders, the followers do not engage in

timestamp update and agreement, so they may have different

timestamps from the leaders at this point. The potential

leader-follower inconsistency will be detected in the fast

path by comparing the hashes and 𝑇 ’s timestamp (§3.4) and

resolved in the slow path (§3.7).

3.7 Log Synchronization and Slow Path
Tiga does not guarantee that all transactions are committed

in the fast path. If a leader updates a timestamp, it causes in-

consistency between itself and its followers. Therefore, after

appending the transaction to its log, the leader advances its

sync-point and also sends the followers a log synchroniza-

tion message. In the synchronization messages, the leader in-

cludes the entry’s position, unique identifier
1
and the times-

tamp agreed by leaders. When receiving the synchronization

message, the followers update their logs to keep consistent

with the leader’s log: (1) If the follower’s log contains some

entry that does not exist in the leader’s log, then the follower

1
The coordinator attaches a sequence number to the transaction at submis-

sion. The unique identifier for this transaction is to combine the coordinator-

id and the sequence number.

7

Region-2

Region-1

Region-0
（Leader）

𝑆0
2

𝑆1
2

𝑆0
1

𝑆1
1

𝑆1
0

𝑆0
0

Coordinator
1

2

3

4

5

1 Transaction multicast (§3.1) 2 Timestamp agreement (§3.5)

3 Optimistic execution (§3.3) 4 Quorum check of fast path (§3.4)

5 Log synchronization (§3.7) 6 Quorum check of slow path (§3.7)

0.5 WRTT

0.5 WRTT 0.5 WRTT 0.5 WRTT
6

0.5~1 LAN RTT

Figure 6. Workflow of Tiga (preventive approach).

removes the entry. (2) If the leader’s log contains some entry

that does not exist in the follower’s log, then the follower

first tries to obtain the missing entry locally from its server.

If the entry is not found, then the follower fetches it from

the leader. (3) If some entry exists in both the leader’s and

the follower’s logs but has different timestamps, then the

follower updates the entry’s timestamp to keep consistent

with the leader.

After the log update, the follower advances its sync-point
to indicate its log list has been synchronized with the leader’s

log list up to this point. Then, the follower sends slow-replies

to the coordinators which have multicast those synchronized

entries, notifying the coordinators that entries for these trans-

actions have become consistent with the leader. Our tech-

nical report [30] describes an optimization that does not

require the followers to send the slow reply for every entry.

Followers also periodically report their sync-points to the

leader, so that the leader knows which log entries have been

sufficiently replicated. After the leader confirms that the log

entries have been surpassed by the sync-points from 𝑓 + 1
servers of the same shard, the leader knows these entries are

committed. The leader then advances its commit-point and
notifies its followers of the updated commit-point. Followers
can execute the log entries up to their commit-points and
generate checkpoints to accelerate failure recovery (§4).

A transaction is considered slow-committed on a shard if

the coordinator (1) receives the fast-reply from the leader

and (2) receives slow-replies from at least 𝑓 followers. If

the transaction is either fast- or slow-committed on every

involved shard, it is considered committed.

3.8 Optimization based on Leaders’ Co-location
In §3.3-§3.5, we let the leaders start optimistic execution

without waiting for timestamp agreement. The purpose is

to minimize the latency of the fast path, because times-

tamp agreement costs additional WAN latency when leaders

are separated across regions. However, skipping timestamp

agreement in the fast path introduces the risk of invalid ex-

ecution, i.e., different shards execute transactions based on

inconsistent timestamp orders, incurring expensive rollback.

Alternatively, if timestamp agreement is cheap, i.e., it only
costs LAN latency, then prioritizing timestamp agreement

over execution is more desirable: It only adds negligible

overhead to the commit latency, but avoids the rollback of

invalid execution, because all the leaders execute the trans-

actions according to their agreed timestamp order. Fortu-

nately, we realize that this approach is commonly feasible in

practical deployment. In typical geo-distributed OLTP sys-

tems [7, 13, 38, 49, 53, 56, 59, 62], each datacenter (region)

usually contains a full copy of data, thus enabling co-location

of all leaders within the same region. In addition, industry

workloads also exhibit strong data locality. For example, the

Yahoo! trace [20] reveals 85% regional locality for user data

accesses; the typical edge workload [13] has 90% of intra-

region transactions. By leveraging the co-location property,

we can schedule timestamp agreement ahead of execution,

as shown in Figure 6, in contrast to Figure 3.

Choose the approach of timestamp agreement. Since there
is no one-size-fits-all approach towards different deploy-

ments, Tiga incorporates both approaches into the protocol

design, with the choice being configurable through its modi-

fied view change protocol (§4). Specifically, Tiga leverages

Huygens’ probe mesh to continuously monitor the OWDs

between servers. Based on the measured OWDs, Tiga initial-

izes a view change to designate the leader for every shard.

Tiga tries to co-locate all leaders close to each other, so that it

can schedule timestamp agreement before execution, which

costs negligible LAN overhead but prevents invalid execu-

tion at its root. However, if co-location is infeasible, i.e., Tiga

cannot find a group of leaders with OWDs below a prede-

fined threshold (e.g., 10ms), then the preventive approach

becomes inefficient, prompting Tiga to adopt the detective

approach (Figure 3). The view change message includes the

planned approach (i.e., preventive or detective), so that all

servers consistently adopt the planned approach after enter-

ing the new view.

4 Failure Recovery
Server failures in Tiga can be classified into two categories:

leader failures and follower failures. Follower failures are

relatively easier to deal with. A minority of follower fail-

ures in any shard do not interrupt service availability. Tiga

can always use the slow path to commit transactions if the

servers alive are insufficient for the super quorum in the

fast path. When failed followers reboot, they catch up by

synchronizing logs with the leader. Here, we mainly discuss

leader failure handling. Further details and the correctness

proof are included in our technical report [30].

Tiga uses a view-based [61] protocol to facilitate leader

failure recovery. A view records information on membership,

including each member’s role, i.e., as a leader or follower.

8

Tiga distinguishes between two views: a local view (l-view)
which stores information about a shard, and a global view (g-
view) about all shards. A global view includes all local views.

Both the global views and the local views are indexed by

unique and monotonically increasing integers. The views are

managed by a view manager. The view manager is a simple

service implemented on a replicated state machine that is

resilient to failures, e.g., it could be built with ZooKeeper [6].

It is off the critical path of transaction processing in the

common cases, so its performance has no significant impact.

Every server stores both the global and its local view.

When the system is stable (no failures), all servers have the

same global view, which also implies that servers of the

same shard share the same local view. A server attaches

the global and local view-ids to every message it sends out.

When receiving amessage from other shards, a server always

checks and rejects the message if the message has a different

global view. If the message is from within the shard, the

server also checks whether it has the same local view.

The view manager detects server failure(s) using heart-

beats, and launches a view change if a leader fails. The view

change proceeds in the following steps.

1 The view manager creates a new view that has new

leader(s) to replace the failed one(s). When selecting new

leaders, the view manager prioritizes choices that can make

most leaders co-located in the same region, so that inter-

leader timestamp agreement only costs LAN overhead af-

ter the system resumes normal processing in the new view.

Based on the latency cost of timestamp agreement, the view

manager decides whether to use the preventive or detective

approach (§3.8) in the new view. The view manager also

creates new view-ids by incrementing the old view-ids. This

includes a new global view-id and new local view-ids for the

shards whose leaders are changed.

2 The view manager broadcasts the new view to all

servers in the system. When a server receives a newer view

(i.e., higher <g-view,l-view>), it will update its view, and

switch its status from normal to viewchange.

At the start of the view change, the servers stop processing

new transactions. Each server empties its queue and appends

the transactions in the queue to its log list according to

their timestamp order. The new leader is responsible for

collecting the servers’ log lists and rebuilding a new log list

that contains all the previously committed transactions.

3 If a server is the new leader of a shard, it rebuilds a

new log list based on the log lists from any 𝑓 + 1 servers

that remain alive in this shard. The reconstruction of the log

list includes two parts: (a) The leader finds the server that

is holding the largest sync-point among the 𝑓 + 1 servers,

and copies its log list up to the sync-point. (b) The leader

continues to check the remaining entries. For any remaining

entry with a larger timestamp than those recovered in (a),

if it exists in the log lists of ⌈𝑓 /2⌉ + 1 participating servers,

then this entry will also be appended to the leader’s log list

according to its timestamp order.

4 Because the leaders’ timestamp agreement happens be-
fore followers advance their sync-points, (a)’s log entries have
the agreed timestamps across shards. But (b)’s log entries

may have inconsistent timestamps across shards. Therefore,

after rebuilding the log lists, the leaders conduct timestamp

agreement for (b)’s log entries: (1) If a recovered transaction

involves both 𝑠ℎ𝑎𝑟𝑑1 and 𝑠ℎ𝑎𝑟𝑑2, but it is only recovered in

𝑠ℎ𝑎𝑟𝑑1, then 𝑠ℎ𝑎𝑟𝑑2’s leader will pick the transaction from

𝑠ℎ𝑎𝑟𝑑1 to add to its own log list. (2) If a recovered transaction

has inconsistent timestamps across shards, the leaders pick

the maximum one as the agreed timestamp.

5 After timestamp agreement, each leader broadcasts its

log list to its followers. Leaders execute the recovered logs

and switch back to normal. Followers use leaders’ log lists

to replace their old ones, then switch back to normal.

To complete the overall design, the coordinator(s) in Tiga

also cache the global view from the view manager. It only

accepts replies that have the same global view-id. In case of

a view change, the coordinator retries the transaction.

Coordinator failure. If a coordinator fails, the servers will
detect it after a timeout and launch a recovery coordinator

to commit the transaction following the same coordinator

procedure (§3.1, §3.4 and §3.7). The newly launched coordi-

nator can always fetch the view information from the view

manager, and itself is stateless. As a result, the coordinator

failure does not trigger any view change.

Checkpoints to accelerate recovery. Tiga incorporates a

periodic checkpoint mechanism, a common practice for

accelerating the recovery of transaction processing sys-

tems [14, 31, 46, 63]. Since each server maintains the commit-
point, the server can safely execute the log entries prior to

its commit-point, and checkpoint the system state. When

servers fail, the new leader can restore the system state from

the latest checkpoint rather than from scratch. The failed

follower can first fetch the latest checkpoint from the leader

and catch up, significantly speeding up recovery.

5 Evaluation
We build on the Janus codebase [55], which provides a high-

performance implementation of several baseline protocols,

including 2PL+Paxos, OCC+Paxos, Tapir, Janus, and NCC.

Using the same RPC library and runtime environment, we

implement Tiga along with additional baselines, such as

Detock [60] and an enhanced version of Calvin [71], namely

Calvin+. Calvin+ replaces Calvin’s Paxos-based consensus

layer with Nezha [31], saving at least 1 WRTT in committing

transactions. In total, we compare Tiga against 8 baselines

across a range of workloads.

5.1 Evaluation Setup

Workloads. We employ 2 benchmarks: a micro-benchmark

(MicroBench) and the widely used TPC-C [22]. MicroBench

9

Table 1. Maximum throughput (10
3
txns/s).

Benchmark 2PL+Paxos OCC+Paxos Tapir Janus Calvin+ Detock NCC Tiga
MicroBench 22.9 21.8 44.2 77.8 119.6 34.5 47.4 157.3

TPC-C 2.1 0.9 1.1 10.8 6.1 13.3 0.86 21.6

pre-populates each shard with 1 million key-value pairs.

Each transaction performs 3 read-write operations across

different shards by incrementing 3 key-value pairs. The key-

value pairs are selected using a Zipfian distribution [36]. We

tune the skew factor of the Zipfian distribution to control the

contention in MicroBench, where higher skew factors yield

more contention. For TPC-C, we implement all 5 types of

transactions according to the specification [22]. Additionally,

we follow NCC’s approach [50] and make 2 types (Payment
and Order-Status) multi-shot (interactive) transactions.

Baselines and testbed.We compare Tiga to the 8 baseline pro-

tocols. 2PL+Paxos utilizes the wound-wait mechanism [66]

to prevent deadlocks. Detock performs only local replication

at commit and performs geo-replication asynchronously [60].

To tolerate region failures, wemake Detock perform synchro-

nous geo-replication during transaction commit. In Detock,

we evenly distribute the home directories of data items across

regions. NCC’s implementation does not tolerate server fail-

ure, and suggests using Paxos to achieve fault tolerance, so

we implement NCC+ by placing NCC atop a Paxos repli-

cation layer. 2PL/OCC+Paxos and NCC inherently support

interactive transactions by design. For the other protocols

(Calvin+, Janus, Detock, and Tiga), we integrate the decom-

position technique [70] to support interactive transactions.

All experiments are conducted in Google Cloud. We

use n2-standard-16 VMs to run servers and coordinators

(clients are co-located with coordinators on the same VMs).

Data is replicated across 3 regions: South Carolina, Finland,

and Brazil. In practical deployment, clients/coordinators can

either be co-located or separated from the servers, so we con-

sider both cases: (1) We deploy 2 coordinators in each of the

3 regions (local regions). (2) We also deploy 2 coordinators

in the 4th region (remote region), Hong Kong, because some

coordinators might not be allowed to co-locate with servers

due to governmental regulations (e.g., GDPR [25], DSL [58])

or proprietary business reasons. The system is configured

with 3 shards (9 servers in total) for MicroBench and 6 shards

(18 servers in total) for TPC-C to be consistent with Janus’

original setup.

Evaluation method. We evaluate the performance of the pro-

tocols using an open-loop approach [72]: Each coordinator

submits transactions at a given rate. The coordinator main-

tains a cap on the outstanding transactions and stops sub-

mitting new transactions once this cap is reached. Each test

is repeated 5 times, and we report the median of the 5 trials.

Since each region contains a full copy of the data, Tiga adopts

the preventive approach in all evaluations except in §5.5 and

§5.6. §5.5 compares the performance of Tiga’s preventive and

detective approaches. §5.6 evaluates the impact of headroom

on Tiga’s latency and rollback rate.

5.2 MicroBench
We first run MicroBench with a fixed skew factor of 0.5 and

compare protocols’ performance by increasing the submis-

sion rate of each coordinator (Table 1 and Figure 7-8). Then

we fix per-coordinator rate at 8K txns/s, and compare the

protocols’ performance by varying skew factor from 0.5 to

0.99 (Figure 9). We measure the coordinators’ throughput,

commit rate, 50th and 90th percentile latency in each region.

Our evaluation highlights Tiga’s efficiency in achieving

strict serializability and fault tolerance, outperforming state-

of-the-art protocols across various metrics. Specifically: (1)

2PL/OCC+Paxos reach their throughput bottlenecks very

early due to the Paxos consensus layer. Besides, the added

WRTTs by the consensus layer inflate commit latency and ex-

tend the locking window, leading to more aborts. (2) Tapir’s

commit rate decreases rapidly as the load increases, because

more concurrent transactions arrive at the servers in differ-

ent orders, making Tapir abort more transactions to resolve

ordering inconsistencies. (3) Janus and Detock run expensive

graph algorithms to resolve inconsistencies between servers.

When the submission rate grows and/or the contention (skew

factor) increases, the graph computation becomes a bottle-

neck. Detock incurs even more WRTTs due to its layered

design. In addition, since the home directories of different

data items are distributed across regions, Detock pays extra

WRTTs for dependency collection, further impacting per-

formance. (4) Calvin+ uses an epoch-based mechanism to

predefine transactions’ order, which is more robust to the

various skew factors. However, it suffers from the straggler

problem—when one shard is overloaded and slows down,

the entire system is affected, reducing throughput and in-

creasing latency. (5) NCC does not include fault tolerance

for servers, and all servers are located in one region (South

Carolina), so it costs only LAN latency in this region, and

requires at least 1 WRTT in the other three regions. How-

ever, NCC uses Response Time Control (RTC) to guarantee

strict serializability. RTC makes servers release a transac-

tion only after the previous conflicting transaction sends

back the commit notification. Thus, RTC artificially creates

a 1-WRTT gap between these conflicting transactions. This

leads to significant queueing delay. Under high load and con-

tention, RTC limits NCC’s throughput and causes latency

to rise rapidly. Besides, after adding fault tolerance, NCC+

experiences further performance degradation.

Compared to the local region (South Carolina), Tiga’s la-

tency advantage becomes more pronounced in the remote

region (Hong Kong). In the local region (Figure 7), Janus/-

Tapir/Calvin+ can yield 1-WRTT latency at a low submis-

sion rate. However, in the remote region without co-located

servers (Figure 8), they all require at least 2 WRTTs to com-

mit. In contrast, Tiga consistently achieves 1-WRTT latency

in both regions due to its efficient fast path design, delivering

higher performance in more general deployment scenarios.

10

0 5 10 15 20 25
0

25

50
Th

ro
ug

hp
ut

 (1
03 t

xn
s/

s)

0 5 10 15 20 25
0

50

100

Co
m

m
it

Ra
te

(%
)

0 5 10 15 20 25
0.0

0.5

1.0

50
p

La
te

nc
y

(1
03 m

s)

0 5 10 15 20 25
0.0

0.5

1.0

90
p

La
te

nc
y

(1
03 m

s)

Per-Coordinator Rate (103 txns/s)

2PL+Paxos OCC+Paxos Tapir Janus Calvin+ NCC NCC+ Detock Tiga

Figure 7. MicroBench (skew factor=0.5) with varying rates in local region (South Carolina).

0 5 10 15 20 25
0

25

50

Th
ro

ug
hp

ut
 (1

03 t
xn

s/
s)

0 5 10 15 20 25
0

50

100
Co

m
m

it
Ra

te
(%

)

0 5 10 15 20 25
0.0

0.5

1.0

50
p

La
te

nc
y

(1
03 m

s)

0 5 10 15 20 25
0.0

0.5

1.0

90
p

La
te

nc
y

(1
03 m

s)

Per-Coordinator Rate (103 txns/s)
Figure 8.MicroBench (skew factor=0.5) with varying rates in remote region (Hong Kong).

0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

Th
ro

ug
hp

ut
 (1

03 t
xn

s/
s)

0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

Co
m

m
it

Ra
te

(%
)

0.5 0.6 0.7 0.8 0.9 1.0
0.1

1

10

50
p

La
te

nc
y

(1
03 m

s)

0.5 0.6 0.7 0.8 0.9 1.0
0.1

1

10

90
p

La
te

nc
y

(1
03 m

s)

Skew Factor
Figure 9. MicroBench (per-coordinator rate=8K txns/s) with varying skew factors (all regions).

0 2 4 6
0

10

20

30

Th
ro

ug
hp

ut
 (1

03 t
xn

s/
s)

0 2 4 6
0

50

100

Co
m

m
it

Ra
te

(%
)

0 2 4 6
0

2

4

50
p

La
te

nc
y

(1
03 m

s)

0 2 4 6
0

2

4

90
p

La
te

nc
y

(1
03 m

s)

Per-Coordinator Rate (103 txns/s)
Figure 10. TPC-C with varying rates (all regions).

5.3 TPC-C
Compared with MicroBench, TPC-C exhibits more complex-

ity and higher contention: (1) Over 92% of transactions are

read-modify-write operations, with some requiring multiple

shots to complete. (2) Since the data is stored in a column-

based manner (as implemented by Janus), transactions can

conflict frequently as long as they attempt to write the same

column. (3) TPC-C transactions are more CPU-intensive than

MicroBench, resulting in lower throughput for all protocols.

Table 1 and Figure 10 present the evaluation results, with

three main takeaways. (1) Under such a high-contention

workload, 2PL+Paxos, OCC+Paxos, and Tapir all suffer from

very low throughput due to frequent transaction aborts.

Among them, 2PL+Paxos performs slightly better because

its wound-wait mechanism reduces many transaction aborts.

(2) NCC only achieves hundreds of txns/s of throughput, and

NCC+’s throughput is even lower (not shown in Figure 10).

NCC’s poor performance stems not only from aborts but also

from high queueing delays caused by its RTC mechanism.

The queueing delay leads to a buildup of outstanding trans-

actions, which can easily reach the cap during our open-loop

tests, and prevent coordinators from issuing more transac-

tions. (3) Janus, Calvin+, and Detock all benefit from being

largely abort-free, as does Tiga. Under TPC-C, Calvin+ be-

comes less efficient than Janus and Detock, as more shards

are involved and the straggler effect becomes more distinct.

However, all baselines are less efficient than Tiga’s approach

based on synchronized clocks, enabling Tiga to achieve the

highest throughput and lowest latency.

5.4 Failure Recovery Evaluation
We re-run MicroBench (skew factor=0.5), and each coordina-

tor submits 10K txns/s (80K txns/s in total). We kill the leader

in one shard and compare the performance (latency and

11

0 10 20 30
Time (s)

0

100

200
Th

ro
ug

hp
ut

 (1
03

 tx
ns

/s
)

3.8s

(a) Total throughput

0 10 20 30
Time (s)

600

400

200

050
p

La
te

nc
y (

m
s)

(b) Latency (Hong Kong)

Figure 11. Tiga performance before/after leader failure.

Table 2. Performance comparison after server rotation.

2PL+Paxos OCC+Paxos Tapir Janus Calvin+ NCC Tiga
Thpt 18.6 18.0 44.7 71.9 120.0 40.7 141.9

+/−% -18.8% -17.4% +1.1% -7.5% +0.3% -16.5% -9.7%

Latency 1.09 1.11 0.44 0.46 0.67 0.73 0.30

+/−% +47.2% +38.9% +83.3% +39.3% +162% +72.5% +34.0%

Since Detock already distributes the home directories of data items

across regions, server rotation does not affect its performance.

0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

50
p

La
te

nc
y

(m
s)

South Carolina

0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

Hong Kong
Skew Factor

Tiga-Colocate Tiga-Separate

Figure 12.MicroBench latency performance with varying

skew factors (per-coordinator rate=8K txns/s).

throughput) before and after the leader failure. Figure 11a

shows that Tiga takes only 3.8 seconds to complete the global

view change and recover to the same level of throughput.

After the recovery, the commit latency increases (Figure 11b)

because one of the shards only has 𝑓 + 1 = 2 remaining

servers. When transactions involve the data from this shard,

they can only be committed in the slow path. However, even

in such cases, Tiga’s coordinators in the remote region (Hong

Kong) still yield lower latency than the other protocols under

the same workload (Figure 8).

5.5 Leaders Separation vs. Leaders Colocation
When leaders cannot be located in the same region, Tiga pri-

oritizes optimistic execution without waiting for timestamp

agreement, to achieve 1-WRTT latency. To evaluate Tiga in

this setting, we rotate the shard-ids and replica-ids for each
server so that servers with the same shard-id are located

in different regions. We continue to run MicroBench (skew

factor=0.5). Table 2 summarizes the maximum throughput

and the 50th percentile latency at this throughput, as well

as the relative difference (+/−%) compared to the previous

setting (Table 1) where leaders are co-located.

Table 2 indicates that Tiga’s throughput decreases by 9.7%,

but it still outperforms the other protocols in both through-

put and latency. Calvin+ achieves the highest through-

put among baselines, but its latency increases significantly

(+162%) after server rotation because each server needs to

0-Hdrm -50 -25 0 25 50
0

200
400
600
800

50
p

La
te

nc
y

(m
s)

0-Hdrm -50 -25 0 25 50
0
25
50
75
100

Ro
llb

ac
k

Ra
te

(%
)

Headroom Delta (ms)
South Carolina Hong Kong

50p Latency (ms) Rollback Rate(%)

Figure 13. Tiga performance with varying headroom (per-

coordinator rate=8K txns/s), 0-Hdrm (i.e., headroom=0ms)

directly uses sending time for proactive ordering.

Table 3. Throughput and clock synchronization errors with

different clocks.

Ntpd Chrony Huygens Bad-Clock
Thpt (103 txns/s) 156.8 157.1 158.1 154.7

Clock errors (ms) 16.45 4.54 0.012 62.55

The stats of clock synchronization errors are collected by using

Huygens’ real-time monitor functionality [18].

collect the epoch messages across regions, costing additional

WAN overhead and exacerbating the straggler problem.

Figure 12 compares Tiga’s performance in the two settings

with varying skew factors, represented as Tiga-Separate

and Tiga-Colocate. Tiga-Separate incurs higher latency than

Tiga-Colocate, as the skew factor (i.e., contention) increases.

This is because Tiga-Separate involves more complexity to

manage transactions; some transactions also require an addi-

tional WRTT to roll back when the execution results prove

to be non-serializable. Even so, Tiga-Separate still achieves

much lower latency than the other protocols.

5.6 Sensitivity Analysis of Headroom
To evaluate the impact of headroom on Tiga’s performance,

we run MicroBench (skew factor=0.99) with leaders sepa-

rated in different regions. Tiga continues to use the approach

in §3.1 to estimate the headroom for transactions, but we fur-

ther adjust the headroom by adding different offsets (Head-

room Delta in Figure 13), ranging from −50ms to 50ms. We

study Tiga’s latency and rollback rate. As shown in Figure 13,

Tiga’s estimation approach (Headroom Delta=0ms) yields a

headroom that is close to optimal: Reducing headroom incurs

more rollback and worse latency; increasing headroom elimi-

nates rollback but still prolongs latency because transactions

are held unnecessarily long at servers. We also evaluate a

baseline that uses the sending time directly (0-Hdrm in Fig-

ure 13). This approach yields the worst latency and rollback

rate, as it cannot tolerate network message reordering (illus-

trated in Figure 1), thereby highlighting the effectiveness of

Tiga’s headroom estimation based on synchronized clocks.

5.7 Tiga with Different Clocks
To understand the impact of synchronized clocks on Tiga’s

performance, we conduct an ablation study to compare Tiga’s

performance with different clocks. We use different synchro-

nization algorithms and design the following variants.

12

0 5 10 15 20 25
0

100

200

300

400

500

50
p

La
te

nc
y

(m
s)

South Carolina

0 5 10 15 20 25
0

100

200

300

400

500

Hong Kong
Per-Coordinator Rate (103 txns/s)

Ntpd Chrony Bad-Clock Huygens

Figure 14. Tiga latency using different clocks.

(1) Tiga-Ntpd. We use ntpd, which manages time syn-

chronization in most older Linux distributions in Google

Cloud [33]. We configure ntpd to only use Google’s internal

NTP server as the reference clock.

(2) Tiga-Chrony. We use chrony, which is a newer imple-

mentation of NTP [15] as well as the current default NTP

service in Google Cloud [34]. We configure chrony to only

use Google’s internal NTP server as the reference clock.

(3) Tiga-Huygens. We use the Huygens algorithm to syn-

chronize the clocks for coordinators and servers.

(4) Tiga-Bad-Clock. We simulate the situation when the

NTP service becomes unstable (e.g., due to network con-

gestion and partition) by running a local NTP server as the

reference clock. We keep periodically restarting and shutting

down the NTP server. In this case, the clock synchronization

becomes much worse than the previous variants (Table 3).

We run MicroBench (skew factor=0.99) to compare the

performance of the four Tiga variants (Table 3 and Figure 14).

While chrony and Huygens yield different levels of syn-

chronization errors (Table 3), Tiga’s latency remains similar

when equipped with either of them. This is because cross-

region delays range from 60ms to 150ms; the synchroniza-

tion error of chrony, though not as good as Huygens, is still

negligible compared to the cross-region delay. As a result,

both chrony and Huygens enable Tiga to accurately mea-

sure the one-way delay between coordinators and servers

and decide a proper timestamp for the transaction at sub-

mission. By contrast, ntpd’s synchronization error is larger

and causes extra holding time at servers due to the inaccu-

rate measurement of one-way delay. In the worst case, when

clocks are poorly synchronized (as in Tiga-Bad-Clock) and

the error approaches the one-way delay between regions,

Tiga ’s latency inflates substantially.

6 Discussion
Timestamp initialization. Tiga initializes transaction times-

tamps based on the maximum latency from the coordinator

to a super quorum of servers in each shard (§3.1). This ap-

proach aims to increase the likelihood of fast-path commits.

However, in certain deployments, the fast path may actually

incur higher latency than the slow path. This situation arises

when each shard has a simple quorum located close to the

coordinator, while the remaining servers are geographically

Shard-1

Shard-2

𝑇1. 𝑡 = 7

𝑇2 Committed

𝑇2. 𝑡 = 10

𝑇1. 𝑡 = 7 𝑇2. 𝑡 = 10

𝑇1. 𝑡 = 7

𝑇3. 𝑡 = 5

𝑇3. 𝑡 = 5

𝑇3 Committed 𝑇1 Committed

Figure 15. Undetectable timestamp inversion without inter-

shard (leader) coordination.

distant. In such scenarios, committing through the slow path

may be more efficient. To accommodate this, the coordinator

can estimate the latencies for both paths and then choose

whether to use a super quorum or a simple quorum, based

on which option can yield better performance.

Dynamic sharding. Dynamic sharding [3, 5, 41, 65] allows

OLTP systems to distribute heavy-hitter keys and co-locate

frequently accessed data. We believe it could further enhance

Tiga’s performance, and we plan to support it in future ver-

sions. Because single-shard transactions do not require times-

tamp agreement, dynamic sharding can convert multi-shard

transactions into single-shard transactions, thereby reducing

the overhead of timestamp agreement and rollback.

Clock accuracy and timestamp inversion. To prevent times-

tamp inversion and ensure strict serializability, Tiga intro-

duces timestamp agreement (§3.5), which requires leaders of

different shards to coordinate and confirm that their transac-

tions respect real-time ordering. Without this inter-leader co-

ordination, a shard cannot detect timestamp inversion when

it occurs. Figure 15 illustrates such a case: Shard-1’s servers

run with faster clocks than Shard-2’s. As a result, Shard-1

commits a single-shard transaction 𝑇2 with a larger times-

tamp (𝑇2.𝑡 = 10), while Shard-2 later commits another single-

shard transaction 𝑇3 with a smaller timestamp (𝑇3 .𝑡 = 5). Al-

though 𝑇2 and 𝑇3 are processed independently, both conflict

with the multi-shard transaction𝑇1. This yields a serializable

schedule 𝑇2 → 𝑇1 → 𝑇3, which contradicts the real-time

order 𝑇2 → 𝑇3. Since all transactions arrive at their shards

before their assigned timestamps, both shards treat them as

valid, leaving the timestamp inversion undetected. To avoid

such violations of strict serializability, the shards (leaders)

must coordinate.

However, such inter-leader coordination incurs 0.5–1 RTT

of blocking latency for subsequent transactions: if the trans-

action at the head of the priority queue has not completed

timestamp agreement, any conflicting transactions behind it

cannot be executed or released. This blocking latency can be

costly when leaders are distributed across regions and work-

loads exhibit high contention. This raises a natural question:

Can we avoid coordination by leveraging synchronized clocks?
In fact, if we could assume synchronized clocks with a

bounded error 𝜖 , Tiga can eliminate inter-leader coordination

while still avoiding timestamp inversion. The coordination-

free approach works as follows:

13

(1) Each leader updates an incoming transaction’s times-

tamp to its local clock time if the initial timestamp is smaller.

(2) Each leader defers the release of the transaction𝑇 until

its local clock exceeds𝑇 .𝑡 +𝜖 , ensuring that all leaders’ clocks
have passed 𝑇 .𝑡 before 𝑇 is released.

Then, we revisit the example in Figure 15. Suppose the

local clock time of Shard-1’s leader is 𝑐𝑙𝑜𝑐𝑘1. Then the local

clock time of Shard-2’s leader 𝑐𝑙𝑜𝑐𝑘2 ∈ [𝑐𝑙𝑜𝑐𝑘1−𝜖, 𝑐𝑙𝑜𝑐𝑘1+𝜖].
When Shard-1 receives 𝑇2, it defers release until 𝑐𝑙𝑜𝑐𝑘1 >

𝑇2.𝑡 +𝜖 , ensuring that every shard’s clock has already passed
𝑇2.𝑡 . Meanwhile, when Shard-2 receives 𝑇3 and 𝑇1, it updates

their timestamps if they are smaller than 𝑐𝑙𝑜𝑐𝑘2. Two out-

comes follow: (1) if 𝜖 → 0, Shard-2 updates the timestamps

for both 𝑇3 and 𝑇1 to values greater than 𝑇2.𝑡 = 10, yielding

the order 𝑇2 → 𝑇3 → 𝑇1; (2) if 𝜖 → ∞, Shard-1 defers 𝑇2’s
release until after Shard-2 releases 𝑇3 and 𝑇1, yielding the

order 𝑇3 → 𝑇1 → 𝑇2. In both cases, the serializable order

remains consistent with the real-time order. Thus, the prior

knowledge of 𝜖 provides a straightforward way to prevent

timestamp inversion without inter-leader coordination, al-

lowing more transactions to commit in 1 RTT.

We do not assume a deterministic error bound in Tiga’s de-

sign due to the probabilistic nature of Huygens. Nonetheless,

several clock synchronization systems provide deterministic

guarantees. For example, Spanner [21] achieves millisecond-

level error bounds, and Sundial [47] further reduces them

to ∼100 ns. While such synchronization requires specialized

hardware, we expect these solutions to become increasingly

deployable in the future, offering promising opportunities

for Tiga to preserve strict serializability more efficiently.

7 Related Work
Table 4 compares Tiga with state-of-the-art protocols. While

several existing protocols can achieve 1-WRTT commit la-

tency, this optimal performance typically holds only under

narrow conditions—such as co-locating servers and/or co-

ordinators. Moreover, they often sacrifice correctness guar-

antees or incur costly aborts. In contrast, Tiga achieves 1-

WRTT latency in more general deployments, and ensures

strict serializability with few or no transaction aborts.
2

Ordering guarantees in multicast. Several network primi-

tives have been proposed to accelerate distributed proto-

cols. Ordered Unreliable Multicast (OUM) [46] and Multi-

Sequencing Groupcast (MSG) [45] both leverage a single

sequencer to establish ordering, which can incur central-

ized bottlenecks with a software-based sequencer in cloud

settings. Hydra [14] extends OUM and MSG with multi-

ple sequencers. However, it requires all sequencers to con-

tinually send flush messages to receivers. The slowdown

of any sequencer can impede the progress of all receivers.

Tiga’s design is inspired by the deadline-ordered multicast

(DOM) primitive of Nezha [31], but DOM does not consider

2
Tiga is abort-free for one-shot transactions when leaders are co-located.

Table 4. Summary of protocol comparison.

System Consistency Aborts

WRTTs Require co-locating

leaders for best latency?Best Worst

Spanner [21] Strict Ser. High 3 ≥4 Required

AOCC [2] Strict Ser. High 2 ≥3 Not Required

MVTO [64] Ser. Med 2 ≥3 Not Required

MDCC [42] Ser. High 2 ≥3 Required

Calvin [71] Strict Ser. None 2 2.5 Required

Tapir [76] Ser. High 1 ≥2 Not Required

Janus [56] Strict Ser. None 2 3 Required

OceanVista [26]Strict Ser. None 2 2.5 Required

Natto [74] Strict Ser. Med 2 ≥3 Not Required

Detock [60] Strict Ser. None 2 2.5 Required

NCC [50] Strict Ser. Med 2 ≥3 Required

Mako [67] Strict Ser. Med 2 ≥5 Required

Tiga Strict Ser. None 1 2 Not Required

We discuss the commit latency for each system assuming no co-location

requirement between coordinators and servers. For AOCC, MVTO and

NCC, we assume they achieve geo-distributed fault tolerance via repli-

cation. Some systems incur ≥ 𝑥 WRTTs because of aborts and retries.

inter-shard timestamp agreement of transactions. Moreover,

Nezha, as a pure consensus protocol, cannot be easily ex-

tended to work in the multi-shard setting that Tiga targets.

Tiga vs. Mako. The recent protocol, Mako [67], advocates for

decoupling consensus and concurrency control to improve

throughput. In contrast, Tiga prioritizes latency optimization.

Accordingly, we argue that a consolidated design is better

suited for minimizing transaction latency. In geo-distributed

settings, Mako needs multiple WRTTs to commit transac-

tions when they are issued from followers, or when leaders

are not co-located. In contrast, Tiga can consistently commit

transactions in the 1-WRTT fast path.

8 Conclusion
The rapid advancement of accurate clock synchronization

enables new protocols that exploit timestamp ordering to ac-

celerate geo-distributed transaction processing. In this paper,

we have presented the design, implementation, and evalua-

tion of Tiga, a consolidated protocol that uses synchronized

clocks to proactively order transactions at predesignated

timestamps and efficiently resolve inconsistencies among

servers. Compared with conventional layered designs (e.g.,

2PL/OCC+Paxos, Calvin+, Detock, and NCC) and state-of-

the-art consolidated designs (e.g., Tapir and Janus), Tiga can

achieve significantly higher throughput and lower latency.

This work does not raise any ethical issues.

Acknowledgments
We thank the anonymous reviewers for suggestions that

improved our work. This project was funded in part by NSF

awards CNS-2321725, CNS-2238768, CNS-2130590 and NSF

CAREER award 2340748. We also appreciate the support

from Google Cloud Research Credits program.

14

References
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Opti-

mistic Implementations for Distributed Transactions. Technical Report.
USA. https://hdl.handle.net/1721.1/149899

[2] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari.

1995. Efficient Optimistic Concurrency Control Using Loosely Syn-

chronized Clocks. SIGMOD Record 24, 2 (May 1995), 23–34. https:
//doi.org/10.1145/568271.223787

[3] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,

Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,

Jason Hunter, Roberto Peon, Larry Kai, Alexander Shraer, Arif Mer-

chant, and Kfir Lev-Ari. 2016. Slicer: Auto-Sharding for Datacenter Ap-

plications. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2016). USENIX Association,

Savannah, GA, 739–753. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/adya

[4] Saif Al-Kuwari, James H. Davenport, and Russell J. Bradford. 2011.

Cryptographic Hash Functions: Recent Design Trends and Security

Notions. (2011). https://eprint.iacr.org/2011/565.pdf
[5] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas,

Igor Zinkovsky, Luning Pan, Tony Savor, David Nagle, and Michael

Stumm. 2018. Sharding the Shards: Managing Datastore Locality at

Scale with Akkio. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2018). USENIX As-

sociation, Carlsbad, CA, 445–460. https://www.usenix.org/conference/
osdi18/presentation/annamalai

[6] Apache Software Foundation. 2021. ZooKeeper. https://
zookeeper.apache.org. (2021). Accessed: 2025-08-31.

[7] AWS. 2019. Global Tables: Multi-Region Replication for Dy-

namoDB. https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/GlobalTables.html. (2019). Accessed: 2025-08-31.

[8] AWS. 2024. Amazon Time Sync Service expandsMicrosecond-Accurate

time to 87 additonal EC2 instance types. https://aws.amazon.com/
about-aws/whats-new/2024/04/amazon-time-sync-service-
microsecond-accurate-time-additonal-ec2-instance-types/. (2024).
Accessed: 08/31/2024.

[9] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1994. Incre-

mental Cryptography: The Case of Hashing and Signing. In Proceed-
ings of the 14th Annual International Cryptology Conference on Ad-
vances in Cryptology (CRYPTO ’94). Springer-Verlag, Berlin, Heidelberg,
216–233.

[10] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1995. Incremen-

tal Cryptography and Application to Virus Protection. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing (STOC
1995).

[11] Mihir Bellare, Roch Guérin, and Phillip Rogaway. 1995. XOR MACs:

New Methods for Message Authentication Using Finite Pseudoran-

dom Functions. In Proceedings of the Annual International Cryptology
Conference (CRYPTO 1995).

[12] Mihir Bellare and Phillip Rogaway. 1997. Collision-Resistant Hashing:

Towards Making UOWHFs Practical. In Proceedings of the Annual
International Cryptology Conference (CRYPTO 1997).

[13] Xusheng Chen, Haoze Song, Jianyu Jiang, Chaoyi Ruan, Cheng Li, Sen

Wang, Gong Zhang, Reynold Cheng, and Heming Cui. 2021. Achieving

Low Tail-Latency and High Scalability for Serializable Transactions

in Edge Computing. In Proceedings of the 16th European Conference
on Computer Systems (EuroSys 2021). 1–16. https://doi.org/10.1145/
3447786.3456238

[14] Inho Choi, Ellis Michael, Yunfan Li, Dan Ports, and Jialin Li. 2023.

Hydra: Serialization-Free Network Ordering for Strongly Consistent

Distributed Applications. In Proceedings of the 20th USENIX Conference
on Networked Systems Design and Implementation (NSDI 2023). 1–16.
https://www.usenix.org/conference/nsdi23/presentation/choi

[15] Chrony Team. 2024. Chrony. https://chrony-project.org/index.html.
(2024). Accessed: 09/11/2024.

[16] Dwaine Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend,

and G. Edward Suh. 2003. Incremental Multiset Hash Functions and

Their Application to Memory Integrity Checking. In Advances in Cryp-
tology – Proceedings of CRYPTO 2003. 1–18.

[17] Clockwork.io. 2022. Cloud Clocksync Showdown: Ntpd vs Chrony vs

Clockwork. https://www.clockwork.io/cloud-clocksync-showdown-
ntpd-vs-chrony-vs-clockwork/. (2022).

[18] Clockwork.io. 2024. Clockwork Latency Sensei. https://
www.clockwork.io/latency-sensei/. (2024). Accessed: 09/11/2024.

[19] Clockwork.io. 2024. Why One-Way Latency Measures Are Crit-

ical for Distributed Databases, Microservices, and AI Workloads.

https://www.clockwork.io/why-one-way-latency-measures-are-
critical-for-distributed-databases-microservices-and-ai-workloads/.
(2024). Accessed: 08/31/2025.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam

Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel

Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s Hosted Data

Serving Platform. Proceedings of the VLDB Endowment 1, 2 (August
2008), 1277–1288. https://doi.org/10.14778/1454159.1454167

[21] James C. Corbett, JeffreyDean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, and et al.

2012. Spanner: Google’s Globally-DistributedDatabase. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
2012). 251–264. https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/corbett

[22] Transaction Processing Performance Council. 2022. TPC-C. https:
//www.tpc.org/tpcc/. (2022). Accessed: 08/31/2025.

[23] Volt Active Data. 2025. How VoltDB Works. https://docs.voltdb.com/
UsingVoltDB/IntroHowVoltDBWorks.php. (2025). Accessed:

08/31/2025.

[24] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. TheNotions

of Consistency and Predicate Locks in a Database System. Commun.
ACM 19, 11 (1976), 624–633. https://doi.org/10.1145/360363.360369

[25] European Union. 2018. GDPR Personal Data – What Information Does

This Cover? https://www.gdpreu.org/the-regulation/key-concepts/
personal-data/. (2018). Accessed: 08/31/2025.

[26] Hua Fan and Wojciech Golab. 2019. Ocean Vista: Gossip-Based

Visibility Control for Speedy Geo-Distributed Transactions. Pro-
ceedings of the VLDB Endowment 12, 6 (2019), 1471–1484. https:
//doi.org/10.14778/3342263.3342627

[27] Marc Fischlin. 1997. Incremental Cryptography and Memory Check-

ers. In Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT 1997). 275–291.

[28] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea Arpaci-Dusseau,

and Remzi Arpaci-Dusseau. 2020. Strong and Efficient Consistency

with Consistency-Aware Durability. In Proceedings of the 18th USENIX
Conference on File and Storage Technologies (FAST 2020). 1–16. https:
//doi.org/10.1145/3423138

[29] Jinkun Geng. 2025. TLA+ Specification of Tiga. https://github.com/
New-Consensus-Concurrency-Control/Tiga-TLA-plus. (2025).

[30] Jinkun Geng, Shuai Mu, Anirudh Sivaraman, and Balaji Prabhakar.

2025. Tiga: Accelerating Geo-Distributed Transactions with Syn-

chronized Clocks [Technical Report]. (2025). https://arxiv.org/abs/
2509.05759

[31] Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, andMendel Rosen-

blum. 2023. Nezha: Deployable and High-Performance Consensus

Using Synchronized Clocks. Proceedings of the VLDB Endowment 16
(2023), 629–642. https://doi.org/10.14778/3574245.3574250

[32] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel

Rosenblum, and Amin Vahdat. 2018. Exploiting a Natural Network

Effect for Scalable, Fine-grained Clock Synchronization. In Proceed-
ings of the 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX Association, Renton, WA, 81–94.

https://www.usenix.org/conference/nsdi18/presentation/geng

15

https://hdl.handle.net/1721.1/149899
https://doi.org/10.1145/568271.223787
https://doi.org/10.1145/568271.223787
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://eprint.iacr.org/2011/565.pdf
https://www.usenix.org/conference/osdi18/presentation/annamalai
https://www.usenix.org/conference/osdi18/presentation/annamalai
https://zookeeper.apache.org
https://zookeeper.apache.org
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://aws.amazon.com/about-aws/whats-new/2024/04/amazon-time-sync-service-microsecond-accurate-time-additonal-ec2-instance-types/
https://aws.amazon.com/about-aws/whats-new/2024/04/amazon-time-sync-service-microsecond-accurate-time-additonal-ec2-instance-types/
https://aws.amazon.com/about-aws/whats-new/2024/04/amazon-time-sync-service-microsecond-accurate-time-additonal-ec2-instance-types/
https://doi.org/10.1145/3447786.3456238
https://doi.org/10.1145/3447786.3456238
https://www.usenix.org/conference/nsdi23/presentation/choi
https://chrony-project.org/index.html
https://www.clockwork.io/cloud-clocksync-showdown-ntpd-vs-chrony-vs-clockwork/
https://www.clockwork.io/cloud-clocksync-showdown-ntpd-vs-chrony-vs-clockwork/
https://www.clockwork.io/latency-sensei/
https://www.clockwork.io/latency-sensei/
https://www.clockwork.io/why-one-way-latency-measures-are-critical-for-distributed-databases-microservices-and-ai-workloads/
https://www.clockwork.io/why-one-way-latency-measures-are-critical-for-distributed-databases-microservices-and-ai-workloads/
https://doi.org/10.14778/1454159.1454167
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.tpc.org/tpcc/
https://www.tpc.org/tpcc/
https://docs.voltdb.com/UsingVoltDB/IntroHowVoltDBWorks.php
https://docs.voltdb.com/UsingVoltDB/IntroHowVoltDBWorks.php
https://doi.org/10.1145/360363.360369
https://www.gdpreu.org/the-regulation/key-concepts/personal-data/
https://www.gdpreu.org/the-regulation/key-concepts/personal-data/
https://doi.org/10.14778/3342263.3342627
https://doi.org/10.14778/3342263.3342627
https://doi.org/10.1145/3423138
https://doi.org/10.1145/3423138
https://github.com/New-Consensus-Concurrency-Control/Tiga-TLA-plus
https://github.com/New-Consensus-Concurrency-Control/Tiga-TLA-plus
https://arxiv.org/abs/2509.05759
https://arxiv.org/abs/2509.05759
https://doi.org/10.14778/3574245.3574250
https://www.usenix.org/conference/nsdi18/presentation/geng

[33] Google. 2025. Configure NTP on a VM. https://cloud.google.com/
compute/docs/instances/configure-ntp#linux-ntpd. (2025). Accessed:
2025-08-31.

[34] Google. 2025. Configure NTP on a VM (Chrony). https:
//cloud.google.com/compute/docs/instances/configure-ntp#linux-
chrony. (2025). Accessed: 2025-08-31.

[35] Jim Gray and Leslie Lamport. 2006. Consensus on Transaction Commit.

ACM Transactions on Database Systems 31, 1 (March 2006), 133–160.

https://doi.org/10.1145/1132863.1132867
[36] JimGray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Pe-

ter J. Weinberger. 1994. Quickly Generating Billion-Record Synthetic

Databases. Proceedings of the International Conference on Manage-
ment of Data (SIGMOD 1994) (1994), 243–252. https://doi.org/10.1145/
191839.191886

[37] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Transactions
on Programming Languages and Systems 12, 3 (1990), 463–492. https:
//doi.org/10.1145/78969.78972

[38] Joshua Hildred, Michael Abebe, and Khuzaima Daudjee. 2023. Caerus:

Low-Latency Distributed Transactions for Geo-Replicated Systems.

Proceedings of the VLDB Endowment 17, 3 (November 2023), 469–482.

https://doi.org/10.14778/3632093.3632109
[39] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li

Shen, Liu Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu,

Jian Zhang, Jianjun Li, XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng

Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang. 2020. TiDB:

A Raft-Based HTAP Database. Proceedings of the VLDB Endowment 13,
12 (2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[40] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,

Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Mad-

den, Michael Stonebraker, and Yang Zhang. 2008. H-Store: A High-

Performance, Distributed Main Memory Transaction Processing Sys-

tem. Proceedings of the VLDB Endowment 1, 2 (2008), 1496–1499.

https://doi.org/10.14778/1454159.1454211
[41] Antonios Katsarakis, Yijun Ma, Zhaowei Tan, Andrew Bainbridge,

Matthew Balkwill, Aleksandar Dragojevic, Boris Grot, Bozidar

Radunovic, and Yongguang Zhang. 2021. Zeus: Locality-Aware Dis-

tributed Transactions. In Proceedings of the Sixteenth European Con-
ference on Computer Systems (EuroSys 2021) (EuroSys ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 145–161. https:
//doi.org/10.1145/3447786.3456234

[42] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan

Fekete. 2013. MDCC: Multi-Data Center Consistency. In Proceedings
of the 8th ACM European Conference on Computer Systems (EuroSys
2013) (EuroSys ’13). Association for Computing Machinery, New York,

NY, USA, 113–126. https://doi.org/10.1145/2465351.2465363
[43] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4

(2001), 51–58. https://doi.org/10.1145/568425.568433
[44] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19, 2 (October

2006), 79–103. https://doi.org/10.1007/s00446-006-0016-x
[45] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-

Free Consistent Transactions Using In-Network Concurrency Control.

In Proceedings of the 26th ACM Symposium on Operating Systems Prin-
ciples (SOSP 2017). ACM, Shanghai, China, 17. https://doi.org/10.1145/
3132747.3132751

[46] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan

R. K. Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus

with Network Ordering. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2016).
USENIXAssociation, Savannah, GA, 395–410. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/li

[47] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter

Hochschild, Dave Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati,

Prashant Chandra, and Amin Vahdat. 2020. Sundial: Fault-Tolerant

Clock Synchronization for Datacenters. In Proceedings of the 14th

USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2020). USENIX Association, Santa Clara, CA, 611–630. https:
//www.usenix.org/conference/osdi20/presentation/li

[48] Barbara Liskov. 1991. Practical Uses of Synchronized Clocks in Dis-

tributed Systems. In Proceedings of the Tenth Annual ACM Sympo-
sium on Principles of Distributed Computing. https://doi.org/10.1145/
112600.112601

[49] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.

Andersen. 2011. Don’t Settle for Eventual: Scalable Causal Consistency

for Wide-Area Storage with COPS. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP ’11). ACM, Cascais,

Portugal, 401–416. https://doi.org/10.1145/2043556.2043593
[50] Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt Lloyd. 2023. NCC:

Natural Concurrency Control for Strictly Serializable Datastores by

Avoiding the Timestamp-Inversion Pitfall. In Proceedings of the 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2023). USENIX Association, Santa Clara, CA, 821–839. https:
//www.usenix.org/conference/osdi23/presentation/lu

[51] Meta. 2021. ZippyDB: Facebook’s Key-Value Store. https://
engineering.fb.com/2021/08/06/core-infra/zippydb/. (2021). Accessed:
2025-08-31.

[52] Microsoft. 2022. Global Data Distribution with Azure Cosmos DB —

Under the Hood. https://docs.microsoft.com/en-us/azure/cosmos-db/
global-dist-under-the-hood. (2022). Accessed: 2025-08-31.

[53] Microsoft. 2025. Partitioning and Horizontal Scaling in Azure Cosmos

DB. https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-
overview. (2025). Accessed: 2025-08-31.

[54] D. L. Mills. 1991. Internet Time Synchronization: The Network Time

Protocol. IEEE Transactions on Communications 39, 10 (1991), 1482–
1493. https://doi.org/10.1109/26.103043

[55] Shuai Mu and et al. 2016. Janus Repo. https://github.com/NYU-NEWS/
janus. (2016). Accessed: 2025-08-31.

[56] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Con-

solidating Concurrency Control and Consensus for Commits under

Conflicts. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2016). USENIX Association,

Savannah, GA, 409–425. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/mu

[57] Ali Najafi and Michael Wei. 2022. Graham: Synchronizing Clocks

by Leveraging Local Clock Properties. In Proceedings of the 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2022). USENIX Association, Renton, WA, USA, 453–466.

https://www.usenix.org/conference/nsdi22/presentation/najafi
[58] National Congress of the People’s Republic of China. 2021.

Data Security Law of the People’s Republic of China.

https://digichina.stanford.edu/work/translation-data-security-
law-of-the-peoples-republic-of-china/. (2021). Accessed: 2025-08-31.

[59] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi.

2015. Minimizing Commit Latency of Transactions in Geo-Replicated

Data Stores. In Proceedings of the 33rd ACM SIGMOD International
Conference on Management of Data (SIGMOD ’15). ACM, 1279–1294.

https://doi.org/10.1145/2723372.2723729
[60] Cuong D. T. Nguyen, Johann K. Miller, and Daniel J. Abadi. 2023.

Detock: High Performance Multi-Region Transactions at Scale. Proc.
ACM Manag. Data 1, 2, Article 148 (June 2023), 27 pages. https://
doi.org/10.1145/3589293

[61] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication:

A New Primary Copy Method to Support Highly-Available Distributed

Systems. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing (PODC). ACM, New York, NY, USA,

8–17. https://doi.org/10.1145/62546.62549
[62] PingCap. 2024. Three Availability Zones in Two Regions Deploy-

ment. https://docs.pingcap.com/tidb/stable/multi-data-centers-in-
one-city-deployment. (2024). Accessed: 2025-08-31.

16

https://cloud.google.com/compute/docs/instances/configure-ntp#linux-ntpd
https://cloud.google.com/compute/docs/instances/configure-ntp#linux-ntpd
https://cloud.google.com/compute/docs/instances/configure-ntp#linux-chrony
https://cloud.google.com/compute/docs/instances/configure-ntp#linux-chrony
https://cloud.google.com/compute/docs/instances/configure-ntp#linux-chrony
https://doi.org/10.1145/1132863.1132867
https://doi.org/10.1145/191839.191886
https://doi.org/10.1145/191839.191886
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.14778/3632093.3632109
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/3447786.3456234
https://doi.org/10.1145/3447786.3456234
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/568425.568433
https://doi.org/10.1007/s00446-006-0016-x
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3132747.3132751
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi20/presentation/li
https://www.usenix.org/conference/osdi20/presentation/li
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/112600.112601
https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/osdi23/presentation/lu
https://www.usenix.org/conference/osdi23/presentation/lu
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://engineering.fb.com/2021/08/06/core-infra/zippydb/
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://docs.microsoft.com/en-us/azure/cosmos-db/global-dist-under-the-hood
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview
https://doi.org/10.1109/26.103043
https://github.com/NYU-NEWS/janus
https://github.com/NYU-NEWS/janus
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/mu
https://www.usenix.org/conference/nsdi22/presentation/najafi
https://digichina.stanford.edu/work/translation-data-security-law-of-the-peoples-republic-of-china/
https://digichina.stanford.edu/work/translation-data-security-law-of-the-peoples-republic-of-china/
https://doi.org/10.1145/2723372.2723729
https://doi.org/10.1145/3589293
https://doi.org/10.1145/3589293
https://doi.org/10.1145/62546.62549
https://docs.pingcap.com/tidb/stable/multi-data-centers-in-one-city-deployment
https://docs.pingcap.com/tidb/stable/multi-data-centers-in-one-city-deployment

[63] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind

Krishnamurthy. 2015. Designing Distributed Systems Using Approxi-

mate Synchrony in Data Center Networks. In Proceedings of the 12th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2015) (NSDI ’15). USENIX Association, Oakland, CA, USA,

43–57. https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/ports

[64] David P. Reed. 1983. Implementing Atomic Actions on Decentralized

Data. ACM Transactions on Computer Systems 1, 1 (February 1983),

3–23. https://doi.org/10.1145/357353.357355
[65] Kun Ren, Dennis Li, and Daniel J. Abadi. 2019. SLOG: Serializable,

Low-Latency, Geo-Replicated Transactions. Proc. VLDB Endow. 12, 11
(July 2019), 1747–1761. https://doi.org/10.14778/3342263.3342647

[66] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. 1978.

System-Level Concurrency Control for Distributed Database Systems.

ACM Transactions on Database Systems 3, 2 (1978), 178–198. https:
//doi.org/10.1145/320080.320083

[67] Weihai Shen, Yang Cui, Siddhartha Sen, Sebastian Angel, and Shuai

Mu. 2025. Mako: Speculative Distributed Transactions with Geo-

Replication. In Proceedings of the 19th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2025). USENIX Association,

Santa Clara, CA, USA, 1–16. https://www.usenix.org/conference/
osdi25/presentation/shen-weihai

[68] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-

dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,

Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, BramGruneir,

Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. CockroachDB: The

Resilient Geo-Distributed SQL Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’20). Association for Computing Machinery, New York, NY, USA,

1493–1509. https://doi.org/10.1145/3318464.3386134
[69] Robert H. Thomas. 1979. A Majority Consensus Approach to Con-

currency Control for Multiple Copy Databases. ACM Transactions on
Database Systems 4, 2 (June 1979), 180–209. https://doi.org/10.1145/
320071.320076

[70] Alexander Thomson and Daniel J. Abadi. 2010. The case for determin-

ism in database systems. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 70–80.
https://doi.org/10.14778/1920841.1920855

[71] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,

Philip Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Trans-

actions for Partitioned Database Systems. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA,

1–12. https://doi.org/10.1145/2213836.2213838
[72] Sarah Tollman, Seo Jin Park, and John Ousterhout. 2021. EPaxos Revis-

ited. In Proceedings of the 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 2021). https://www.usenix.org/
conference/nsdi21/presentation/tollman

[73] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard

Wong, Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency

Transaction Processing for Globally-Distributed Data. In Proceedings
of the 2018 ACM SIGMOD International Conference on Management of
Data. https://dl.acm.org/doi/10.1145/3183713.3196924

[74] Linguan Yang, Xinan Yan, and Bernard Wong. 2022. Natto: Providing

Distributed Transaction Prioritization for High-ContentionWorkloads.

In Proceedings of the 2022 ACM SIGMOD International Conference on
Management of Data. https://doi.org/10.1145/3514221.3526161

[75] YugabyteDB. 2025. Isolation Levels. (2025). https://docs.yugabyte.com/
preview/explore/transactions/isolation-levels/ Accessed: 2025-08-31.

[76] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan R. K. Ports. 2015. Building Consistent Transactions

with Inconsistent Replication. In Proceedings of the 25th ACM Sym-
posium on Operating Systems Principles (SOSP 2015). https://doi.org/
10.1145/2815400.2815404

[77] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov.

2014. Fast Databases with Fast Durability and Recovery Through

Multicore Parallelism. In Proceedings of the 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
2014). https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/zheng_wenting

[78] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex

Miller, Evan Tschannen, Steve Atherton, Andrew J. Beamon, et al. 2021.

FoundationDB: A Distributed Unbundled Transactional Key-Value

Store. In Proceedings of the 2021 ACM SIGMOD International Conference
on Management of Data. https://doi.org/10.1145/3448016.3457559

17

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ports
https://doi.org/10.1145/357353.357355
https://doi.org/10.14778/3342263.3342647
https://doi.org/10.1145/320080.320083
https://doi.org/10.1145/320080.320083
https://www.usenix.org/conference/osdi25/presentation/shen-weihai
https://www.usenix.org/conference/osdi25/presentation/shen-weihai
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/320071.320076
https://doi.org/10.1145/320071.320076
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.1145/2213836.2213838
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://www.usenix.org/conference/nsdi21/presentation/tollman
https://dl.acm.org/doi/10.1145/3183713.3196924
https://doi.org/10.1145/3514221.3526161
https://docs.yugabyte.com/preview/explore/transactions/isolation-levels/
https://docs.yugabyte.com/preview/explore/transactions/isolation-levels/
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/2815400.2815404
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zheng_wenting
https://doi.org/10.1145/3448016.3457559

	Abstract
	1 Introduction
	2 Background and Intuition
	3 Tiga Design
	3.1 Timestamp Initialization
	3.2 Conflict Detection and Timestamp Update
	3.3 Optimistic Execution
	3.4 Quorum Check of Fast Path
	3.5 Timestamp Agreement
	3.6 Avoiding Timestamp Inversion
	3.7 Log Synchronization and Slow Path
	3.8 Optimization based on Leaders' Co-location

	4 Failure Recovery
	5 Evaluation
	5.1 Evaluation Setup
	5.2 MicroBench
	5.3 TPC-C
	5.4 Failure Recovery Evaluation
	5.5 Leaders Separation vs. Leaders Colocation
	5.6 Sensitivity Analysis of Headroom
	5.7 Tiga with Different Clocks

	6 Discussion
	7 Related Work
	8 Conclusion
	References

