Assignment 4

Anirudh Sivaraman

2024/03/28

1 Written Questions

See Gradescope for the written questions. Half of the credit for this assignment will be for the written portion,
while the other half will be for the coding portion.

2 Coding questions

Use the starter code (hash tables.py) to implement the three different schemes for exact matching we discussed
in class: standard hashing, 2choice hashing, and 2left hashing.

2.1 Code walkthrough

hash _tables.py is the only Python file you'll need to work with for this assignment. It takes two arguments.
The first one is the occupancy of the hash table (i.e., what fraction of the hash table is populated with entries).
The second one is the name of the hashing scheme (*2choice”, “2left”, or “standard”). For instance, to run
hash tables.py with the standard hashing scheme with an occupancy of 30%, you would run the following
command:

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.3 --hash_type standard
Fraction of trials in which slot size did not exceed capacity 0.671

The output of running this command tells you how often the hash table did not overflow. To understand
how this is calculated, let's walk through hash _tables.py.
The values of the HashTable object are:

1. self.occupancy: The occupancy of the hash table as a fraction between 0 and 1. This is fed in by the
user.

2. self.num_slots: The number of slots in the hash table. For all three hashing schemes, we structure the
hash table as an array with a certain number of slots, where each slot can hold up to a certain number of
elements.

3. self.cap_per_slot: The capacity of each slot. This reflects hardware realities of how many elements can
be held in each slot. We have set this to 5 because it is in the same ballpark as the number of elements
in each slot for real hardware implementations.

4. self.total trials: The number of trials. For each trial, we check if the hash table overflowed: did the hash
table run out of space because a particular slot that an element hashed into was already full? Note that
we say that the hash table overflowed if even a single slot's capacity has been exceeded—even though
the hash table might still have space in other slots. This is why the fraction of trials in which the hash
table did not overflow reaches 0 long before the occupancy of the hash table reaches 1.

5. self.num_elements: The number of elements in the hash table. This is computed by multiplying the
occupancy fraction with the product of the number of slots and the capacity of each slot (i.e., the
maximum occupancy of the entire hash table).

After the constants have been initialized, the loop in run_hash table runs (for seed in range (TOTAL_TRIALS):).
This for loop runs a number of independent trials, each initialized with a different random seed to ensure the
randomness in each trial is independent of other trials.

In each trial, we run through the total number of elements in the hash table in another for loop (for i
in range(self.num_elements):). For each element, we compute the slot it hashes into depending on the
hashing scheme, which is another user-supplied input. You need to implement three hashing schemes.

1. standard: We compute a single slot number for each new element regardless of the current occupancy of
each slot.

2. 2choice: We compute 2 slot numbers using two independent hash functions, and then pick the slot number
that has lower occupancy, breaking ties randomly.

3. 2left: We conceptually divide the hash table into two subtables with equal number of slots in each subtable.
We compute a slot number in each subtable using two independent hash functions. Of these 2 slots in
2 subtables, we pick the slot that has lower occupancy, but always break ties in favor of one of the two
subtables.

To compute a random slot number, you do not need to (and should not!) use an actual hash function for
this assignment. Instead, you can use the Python function call (random.randint (U, L)) to generate a random
slot number between U and L (both U and L included). You can test the occupancy at a particular slot number
using the occupancy_at_slot array. For each algorithm, make sure that the slot number you pick is returned
from its respective function because this is the index variable we use to update the occupancy_at_slot array.

2.2 Testing your code

The easiest way to test your code is to remember that for a given occupancy, the fracton of trials in which the
hash table does not overflow is going to be highest for 2left, followed by 2choice, followed by standard. For
instance, when | run my solutions for all three algorithms with an occupancy of 0.6, here's what | see.

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.6 --hash_type 2left
Fraction of trials in which slot size did not exceed capacity 0.999

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.6 --hash_type 2choice
Fraction of trials in which slot size did not exceed capacity 0.994

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.6 --hash_type standard
Fraction of trials in which slot size did not exceed capacity 0.0

Also, when the occupancy of the hash table goes up, the performance of all three schemes must degrade:
the fraction of trials in which the hash table does not overflow should go down. When | run the three algorithms
with an occupancy of 0.7, here's what | see.

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.7 --hash_type 2left
Fraction of trials in which slot size did not exceed capacity 0.95

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.7 --hash_type 2choice
Fraction of trials in which slot size did not exceed capacity 0.844

Anirudhs-Air:sims anirudh$ python3 hash_tables.py --occupancy 0.7 --hash_type standard
Fraction of trials in which slot size did not exceed capacity 0.0

2.3 Submitting your code

Please submit your code on Gradescope. To do this, create a zip archive that contains all of the source files you
modified from the starter code, along with any additional source files you may have created. This zip archive
should have the same directory structure as the original zip archive containing the starter code.

Page 2 Last updated: 2024/03/28 at 01:27:52

	Written Questions
	Coding questions
	Code walkthrough
	Testing your code
	Submitting your code

