
Lecture 17: Video streaming

Anirudh Sivaraman

2020/11/23

1 Overview of the next few lectures

Starting this lecture, we’ll talk about some more recent developments in networking, which are less than about

15 years old.

1. We’ll spend two lectures on two new classes of applications that have taken off on the Internet: video

streaming and peer-to-peer applications.

2. We’ll then spend one lecture talking about datacenter networks. A datacenter network consists of tens

of thousands of server machines interconnected by a low-latency and high-capacity network at a single

geographic site that spans a few football fields. These networks are owned and operated by companies

such as Google, Amazon, Microsoft, and Facebook, which use these large networks to offer services to

millions of users over the Web.

3. We’ll spend one lecture talking about programmable networks: the ability to change the functionality of

a network’s routers or switches in the same way that we can change the functionality of end hosts today.

Unlike the course so far, which was structured around specific themes (e.g., physical layer or network

security), the remaining material will be significantly more unstructured. This is because the topics themselves

are new, the right way to teach them hasn’t yet emerged, and I’ll be relying on primary sources (such as peer-

reviewed papers) instead of textbooks to develop the lecture material. On the other hand, they hopefully convey

to you the excitement of being in a continuously evolving field, which you can contribute to during your own

careers.

2 The stored-video streaming problem

In today’s lecture, we’ll talk about the problem solved by YouTube, Netflix, and Hulu. We are going to mostly

be talking about stored-video streaming, where there is a video stored as a file on a server somewhere (e.g., the

YouTube server), which needs to be sent to a client (e.g., your web browser or a mobile phone app). Towards

the end of the lecture, we’ll talk about live-video streaming, where a live video (e.g., a concert) is transmitted

to viewers in real time.

First, as background for the stored-video streaming problem, we’ll describe how videos are stored on a server

in a space-efficient manner. Second, we’ll describe a few simple strawman designs for stored-video streaming.

Third, we’ll compare these strawman designs to extract a user’s requirements for stored-video streaming. These

requirements often conflict. Hence, a real stored-video streaming system needs to compromise between different

conflicting requirements. Fourth, we’ll compare stored-video streaming to two related video-based systems on

the Internet: video conferencing and live-video streaming.

3 Storing videos efficiently

A video is a sequence of images, called frames, at a certain frame rate, e.g., 24 frames per second. When a

video is first captured by a device such as a webcam or a video camcorder, the frames are fairly large in size.

1



3 STORING VIDEOS EFFICIENTLY

Each frame of video captured by the device is called a raw frame. To first approximation, a raw frame is a

2D array of pixels. For instance, the Ultra High Definition Telivision (UHDTV) standard, informally called 4K

video, represents raw frames as a 3840*2160 array.1 Similarly, the Full HD standard represents raw frames as

a 1920*1080 array.

Raw frames are uncompressed: the light intensity at each pixel is independently represented using a certain

number of bits depending on how this light intensity is encoded. A simple method is to represent the red, green,

and blue components of the light intensity with a separate 8 bit number, though more sophisticated methods

are used in practice today.

Notably, raw frames do not take advantage of two forms of redundancy in a video: intra-frame redundancy

and inter-frame redundancy. Intra-frame redundancy occurs when there are large portions of a frame that are

similar in light intensity, e.g., a frame showing a white wall. Inter-frame redundancy occurs when consecutive

frames in a video are similar to each other, e.g., a relatively slow moving portion of a movie where a person

moves from one side of the room to another, but the room itself remains unchanged across frames.

Taking advantange of these redundancies results in compressed videos where one part of the video can be

predicted from another. In intra-frame compression, one portion of a frame (say B) can be predicted from

another portion (say A) of the same frame, implying that only the light intensity values for A need to be stored.

Similarly, in inter-frame compression, one portion of a frame can be predicted from another portion of a different

frame, again resulting in storage savings.

These storage savings can be significant. For instance, in a 4K video, the raw frame can be around 11

megabytes. An intra-coded frame, which uses intra-frame compression alone, is around 1 megabyte. An inter-

coded frame, which can use both intra-frame and inter-frame compression, is even smaller at around 10–30

kilobytes [1].

Based on the discussion above, it might seem like we should only use inter-coded frames for all frames but

the first frame.2 Why do we need intra-coded frames at all?

First, the redundancy between two consecutive frames might be so low that an inter-coded frame does not

significantly decrease the frame size relative to just starting afresh and using an intra-coded frame. Second,

even if there is significant inter-frame redundancy, it is useful to periodically insert intra-coded frames. This is

to allow a user playing the compressed video to seek to an arbitrary time within the video.

Without a periodic intra frame, the user might have to decompress (the inverse process of compression)

every frame starting from the first one to seek to (say) the 10000th frame3 in the video. This can take a

long time, especially with larger 4K videos. Instead, having a periodic intra-coded frame allows the user to

start decoding from the intra-coded frame closest to the seek point. This is because the intra-coded frame

can be decoded without access to any of the previous frames because it doesn’t depend on any frame before

it. Systems like YouTube insert an intra-coded frame every 4–5 seconds [1]. We’ll call a combination of an

intra-coded frame and a set of inter-code frames, until the next intra-coded frame, a chunk.

With all of this background out of the way, let’s describe what happens when you upload a video that you

captured to YouTube. You first capture the video using a device like a webcam. Then, your video recording

software transforms the raw frames from the webcam into a compressed video employing both intra-coded and

inter-coded frames. Your video recording software likely has some default settings for the quality of the video,

which is most directly indicated by the number of pixels in the 2D array we mentioned and the frame rate in

frames per second. So, by this definition, UHDTV has higher quality than Full HD.

The video you upload to YouTube is likely of a fairly high quality. To store the video, YouTube decompresses

the video and compresses it again into several different quality levels that correspond to different number of

pixels in the pixel array. This decompress+recompress process is called transcoding. As you can expect, a higher

quality video needs more bits per frame, and having a range of quality levels allows YouTube to serve your video

to a range of clients with widely different network capacities. You can see the different quality levels available

for a video using the settings button at the right bottom corner of a YouTube video. The quality levels are

labeled by a number ranging from 144 pixels to 2160 pixels. This number reflects the number of pixels in one

1There are a few different standards, including UHDTV, which are all grouped into the informal term 4K.
2The first frame has to be intra-coded by definition because there is no previous frame.
3This is roughly 416 seconds in a 24 frame per second video.

Page 2 Last updated: 2020/11/23 at 12:37:47



4 SOME STRAWMAN DESIGNS FOR STORED-VIDEO STREAMING

dimension of the 2D array, typically the shorter dimension, e.g., 144p refers to a 144*256 array, while 1080p

refers to a 1080*1920 array.

Once the stored-video streaming server has created multiple different quality levels for a video, the stored-

video streaming problem is the problem of dynamically selecting what quality level to use for a client depending

on the network conditions at the client’s end. These network conditions can vary from one client to another

depending on where the client is geographically located and can also vary within a single client’s video session

because the client moves from (say) WiFi to LTE.

4 Some strawman designs for stored-video streaming

Next, we’ll discuss some strawman designs for the stored-video streaming problem assuming video is stored at

different quality levels at the stored-video streaming server. Each of these strawman designs has some pros and

some cons and analyzing these designs will help us understand what it is that users really care about in stored-

video streaming. A real stored-video streaming system picks some compromise between multiple conflicting

user requirements—or more ambitiously, lets the user pick their own compromise.

The simplest solution to the stored-video streaming problem is to treat it like downloading a file. The client

first downloads the entire video at the highest quality to their local disk. Once the file has downloaded, the

client plays it using their video player. The pro of this approach is that the user gets the highest quality video.

However, the user needs to wait till the entire video is downloaded, which isn’t particularly feasible for a long

video like a two-hour movie. Furthermore, the user may not even watch the entire video and lose interest

in between. From the video provider’s perspective, this represents wasted egress network capacity out of the

streaming server that could have been more gainfully used for another client.

The second strawman design for the stored-video streaming problem is to send the lowest quality video to

the client one chunk at a time. Then, at the client, we overlap the playback of downloaded chunks with the

download of new chunks. In other words, when the client is watching a particular chunk, subsequent chunks in

the video are being downloaded from the server. This design implies that the user needs to wait only till the first

chunk is downloaded, which can be pretty quick because it is only a few seconds of video at the lowest quality

level. The benefit of this approach is low startup delay for the client and the ability to stop sending video for

the server if the client disappears or pauses playback. The downside is that the video quality is quite poor.

For the third strawman, let’s modify the second strawman to send the highest quality video that the client’s

network can support. How do we determine this highest quality video? For simplicity, let’s assume the client’s

total available capacity to the server for stored-video streaming is C bits/second. Let’s assume that for each

quality level L of the video, the stored-video streaming server provides us an estimate of the number of bits per

second that it would take to transmit video at that quality level (CL). Then, we want to pick the highest level

L such that CL < C.

Why is this? This is because CL is the number of bits per second of video in the video stream, i.e., the

ratio of the video’s file size to its duration. Then C/CL represents the number of seconds of video downloaded

every second at the client. The video player is playing one second of video every second, assuming you are not

speeding up playback. Then so long as C/CL is greater than 1, the video player will not starve for content to

play back. This translates to the requirement CL < C.

In summary, for strawman 3, we want to pick the highest L such that CL < C. Any higher and the video

player will starve; any lower means that we can do better. While this works in theory, the problem in practice

is that C is unknown and can change over time as the client’s network conditions change. If C improves this is

not a concern, but if C decreases, the video player will starve for content, leading to the spinning wheel that

many of us are familiar with on YouTube. YouTube’s spinning wheel is an indication that the video player has

exhausted all the video content that it can play back and is waiting for more content to be delivered over the

network. Hence, the problem with strawman 3 in scenarios of varying network conditions is the presence of

rebuffering or buffer stall events that can annoy the user.

For strawman 4, we can use strawman 3 until there is a rebuffering event. At this point, we can switch to

a lower video quality until C improves again. But time-varying video quality isn’t particularly pleasant either. It

may be preferable to watch a consistently medium-quality video rather than a video that oscillates between the

Page 3 Last updated: 2020/11/23 at 12:37:47



6 DIFFERENCES FROM VIDEO CONFERENCING AND LIVE VIDEO STREAMING

highest and lowest video quality levels.

5 User requirements in stored-video streaming

Our discussion of the 4 strawman designs in the previous section should have given you a sense of what users

actually care about in stored-video streaming. They care about at least four things and maybe more.

1. Startup delay: How long does the user have to wait before they can play even the first frame of the video?

2. Average video quality: What was the video quality of the video watched by the user averaged over the

duration of the video session?

3. Rebuffering events: How many times (and for how long each time) did the playback stall because the

video player no longer had any content to play?

4. Video quality variations: How often and how much did the video quality change over the course of the

video playback?

These requirements are in conflict with each other. Minimizing startup delay would call for downloading low

quality video (strawman 2), which conflicts with requirement 2. Similarly, switching between video quality levels

as strawman 4 does may give you high average video quality at the cost of a non-uniform video experience.

Video streaming systems balance these four concerns by picking some compromise between them and are

more involved than the four strawman designs described here. As a result, we won’t describe the algorithms

within these systems here, but only discuss the compromises made by two specific systems here.

In some cases, the compromise is pretty steep. For instance, the Buffer-Based Algorithm [2] explicitly tries

to maximize average video quality and minimize the number of rebuffering events. It makes no mention of the

other two goals. On the other hand, MPC [3] defines a quality of experience metric (QoE) that uses a weighted

combination of the four goals defined here, where the weights could in theory be set by the user.

6 Differences from video conferencing and live video streaming

To summarize, we’ll briefly compare stored-video streaming with two other video-based systems in widespread

use on the Internet, especially in a post-pandemic world: video conferencing and live video streaming.

Live video streaming can be treated using the same techniques in stored-video streaming if a sufficiently

long latency is imposed between when the event happens in the real world and when it is available for viewing

on a video player, e.g., a 10 second delay between when the home run was hit in the ballpark and when you see

it on your computer. With this sufficently long latency, the live video can be uploaded onto a streaming server

as it is being captured, which then stores the video and streams out the video to clients as described earlier.

Of the four strawman designs, strawman 1 alone is ruled out because the entire video is never available at any

given point in time (it wouldn’t be live if so). This means the only possible solutions need to send video one

chunk at time.

The biggest difference between stored-video streaming and video conferencing is that video conferencing

is interactive. What this means is that the latency between when the video frame is generated at one end of

the video conference and when it is viewed at the other end of the video conference is crucial. Otherwise,

you have the following scenario: A says something at time t and expects that B will get it at a time t + δ

later, where δ is small. If B does not receive it by then, A will assume something went wrong and repeat what

was said. Meanwhile, B probably hears the earlier version of the statement and responds, all in all leading

to a very confusing user experience, commonly called lag. This frame latency requirement differentiates video

conferencing from streaming.

In stored-video streaming, the frames are all available at time 0 and the video streaming system can always

give the network a “head start” over the user’s video playback by increasing the startup delay and downloading

a large number of frames at time 0. A limiting case of the head start strategy is strawman 1, which sends

down the entire video so that the video playback is always behind what the network has downloaded. This is

not possible in video conferencing because the frames are not even all available at time 0.

Page 4 Last updated: 2020/11/23 at 12:37:47



REFERENCES REFERENCES

References

[1] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam, William Zeng,

Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. Encoding, Fast and Slow: Low-

Latency Video Processing Using Thousands of Tiny Threads. In NSDI, 2017.

[2] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A Buffer-based

Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In SIGCOMM, 2014.

[3] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A Control-Theoretic Approach for Dynamic

Adaptive Video Streaming over HTTP. In SIGCOMM, 2015.

Page 5 Last updated: 2020/11/23 at 12:37:47


	Overview of the next few lectures
	The stored-video streaming problem
	Storing videos efficiently
	Some strawman designs for stored-video streaming
	User requirements in stored-video streaming
	Differences from video conferencing and live video streaming

