Lecture 4: Reliable transport

Anirudh Sivaraman

2021/10/19

Last week, we began to look at each of the five layers of the Internet’'s protocol stack. We started with
the application layer and the Sockets API that applications use to communicate with other applications. The
next two weeks will focus on the transport layer. This week we'll focus on how the transport layer provides the
abstraction of a reliable, in-order bytestream (TCP). Next week, we'll look at how the transport layer regulates
the transmission rate of end hosts on a network to prevent end hosts from overwhelming the network.

Specifically, we'll discuss two topics in this lecture.

1. Stop-And-Wait. This is likely the simplest technique to achieve reliability. As the name suggests, a
sender in the Stop-And-Wait protocol sends some data to the receiver, stops and waits until it receives an
acknowledgement from the receiver, and then moves on to the next piece of data. The Stop-And-Wait
protocol is simple, but provides a good starting point to understand the sliding window protocol in the
next lecture. The sliding window protocol is similar in spirit to real TCP implementations.

2. Retransmission timers: Because a network might drop packets (e.g., an overflowing queue, bit flips
on wireless transmission mediaﬂ), a Stop-And-Wait sender needs a strategy to retransmit lost packets.
Typically, the sender doesn't know with certainty whether a packet has been lost, and if so, which packet
it is and when it was lost. Instead a sender has to indirectly infer a lost packet by the lack of an
acknowledgement for that packetE] Typically, the sender infers a lost packet by starting a retransmission
timer as soon as a packet is transmitted. This timer times out if it hasn't received an acknowledgement
for a long time. This long time is called the timer's timeout. We'll look at how the sender decides on
the timer’s timeout. If the timeout is too short, the sender risks overwhelming the network with duplicate
packets, and if it's too long, the sender risks degrading the transport-layer throughput of the protocol by
waiting too long and letting the network idle.

1 Stop-And-Wait

1.1 The problem

Before we describe the Stop-And-Wait protocol, it is useful to formally state the reliability problem. Specifically,
let's assume we have an ordered list of packets P1, P2, ..., PN at a sender. The sender needs to get these
to the receiver in the same order even if the network reorders packets arbitrarily, duplicates packets arbitrarily,
delays packets arbitrarily, and drops packets arbitrarily. In a real TCP implementation, we would replace an
ordered list of packets with an ordered list of bytes—hence the term reliable in-order bytestream. This does
require some changes, which we won't get into in this course, but the techniques are not materially different
from what we discuss here.

However, we will assume some good things of the network. First, we will assume that the network is not
partitioned, i.e., there is a path from the sender to the receiver that has the ability to carry a non-zero number

IWireless transmission media such as cellular and WiFi networks are particularly prone to packet errors. This is because at the
analog level, bits are represented by voltage signals, and these signals are distorted from their original values by many sources:
noise, interference from other senders, and signal attenuation when traveling through the atmosphere and through walls.

2Some router mechanisms allow routers to send a notification packet back to the end host if their queues overflow. But such
techniques don't cover all errors (e.g., bit flips) and the notification packet itself might be lost.

1.2 The Stop-And-Wait protocol 1 STOP-AND-WAIT

of bits per second. If the network is partitioned, there is no hope of sending anything from the sender to the
receiver. Second, we will assume that the sender and receiver computers do not crash during the process of
reliably transmitting the ordered list P1, P2, ..., PN. Providing reliability in the face of crashes is much harder
and requires a non-volatile storage medium such as a hard disk that survives between crashes.

1.2 The Stop-And-Wait protocol

The Stop-And-Wait protocol is very straightforward at both the sender and the receiver. At the sender side,
we carry out the following steps.

1. Transmit the first packet.

2. Wait for this packet to be acknowledged by the receiver. This may require the sender to retransmit the
packet if the packet has not been acknowledged even after a long time. We'll define what “long time”
means in §2

3. Repeat the same procedure with the second, third, fourth, ..., nth packet.
At the receiver side, we carry out the following steps.
1. Send an acknowledgement for the packet that was just received.

2. Maintain a variable (next_in_order) corresponding to the packet number of the next packet that is
required to provide reliable and in-order packet delivery. For instance, if the packets received so far have
packet numbers 1, 2, 3, 4, 4, the value of next_in_order is 5.

3. If the just received packet's number equals next_in_order, increment next_in_order. Otherwise, just
discard the packet. This step is required because packets can be duplicated. Packet duplication can happen
because of errors within the network. It can also happen because the Stop-And-Wait retransmitted a data
packet too soon, in which case both the original and retransmitted packet will be received at the receiver.

The Stop-And-Wait protocol needs a way to identify the packet number both in the data and the acknowl-
edgement packets. This is commonly called a sequence number and is carried by both data and acknowledgement
packets in the Stop-And-Wait protocol.

This sequence number field is also found in TCP today, except that TCP sequences bytes and not packets.
If you look at the TCP header, there are two 32-bit sequence number fields in it. One is called the sequence
number and the other is called the acknowledgement number. The sequence number identifies the first byte
of data being carried by this packet (called a TCP segment), while the acknowledgement number identifies the
next byte that the sender of this packet is expectingE]

1.3 Throughput of the Stop-And-Wait protocol

The Stop-And-Wait protocol sends a packet, waits for an acknowledgement, and then sends the next packet.
So in every “round,” the Stop-And-Wait sender transmits a single packet. Assuming losses are relatively rare,
each round takes up time equal to the round-trip time (RTT), i.e., the time taken to send a single packet from
the sender to the receiver plus the time taken for the receiver to send an acknowledgement back to the sender.

In general, the RTT consists of several components: (1) the propagation delay from the sender to the
receiver plus the propagation delay from the receiver to the sender, (2) any queueing delay incurred along the
path from the sender to the receiver depending on how many other applications happen to traverse routers along
the same path, and (3) the transmission delay required to transmit packets and acks of a finite size on a link
with a finite capacity. The RTT does not include the delay of retransmitting data because each retransmission
corresponds to a new packet and each RTT measurement pertains to a single packet—not multiple packets.
The RTT also does not include application-layer delays because the RTT measurement starts after a packet

3Recall that TCP communication is bidirectional, so the data packet in one direction also serves as the ACK packet in the other
direction.

Page 2 Last updated: 2021/10/19 at 15:59:03

2 RETRANSMISSION TIMERS

has been created using data supplied by the application. We will occasionally use the term RT T, to denote
the lowest possible RTT, i.e., the RTT when the queueing delay is 0. This represents a lower bound on the
RTT that can actually be realized in practice.

This means that the Stop-And-Wait protocol sends roughly one packet every RTT, which is a throughput of
1/RTT packets per second.[z_’-] Let’s plug in some numbers to understand this throughput better. Your WiFi link
can carry 1460 bytes of TCP data in each packet. Let's assume the round-trip time between here and California
is about 100 ms. Then the throughput of the Stop-And-Wait protocol will be 1460 bytes every 100 ms or
about 116 kbit/s. For comparison, your WiFi links provide at least 10 Mbit/s of capacity to most points on the
Internet. So if you use the Stop-And-Wait protocol, you will only be using about 1% of the link's capacity.

Clearly, we should try to do better. In the next lecture, we'll look at a better reliable transport protocol
called the sliding window protocol, which provides much better throughput than the Stop-And-Wait protocol.
The basic idea in the sliding window protocol is to start transmitting the second, third, and subsequent packets
while still waiting for the acknowledgement of the first packet. In other words, instead of permitting only one
unacknowledged packet at a time, we allow multiple unacknowledged packets at a time. For now though, we'll
return to the Stop-And-Wait protocol and look at the question of deciding when to declare packets lost and
retransmit them.

2 Retransmission timers

2.1 Deciding when a packet has been lost

Suppose the sender transmits a packet to the receiver. It then starts a retransmission timer. When this timer
times out, the sender decides the packet or its acknowledgement has been lost and retransmits the packet.
What should the timeout of this timer be so that the sender can be reasonably confident that the data packet
(or its acknowledgement packet) has been lost and hence needs to be retransmitted? Clearly, the sender must
at least wait for the current round-trip time (RTT) between the sender and the receiver. For instance, if it takes
at least 100 ms for a packet to get from NYC to LA, there is no point retransmitting after 1 ms; the receiver
will then just end up with multiple copies of the same data packet, which would waste the link's capacity.

So we want to wait at least the RTT and maybe a little more. How much more? RTTs can vary for a
number of reasons: queueing delays in the network, changes in the path between the sender and the receiver,
etc. If we treat the RTT as a random variable drawn from a probability distribution instead of a single fixed
value, we want to pick a high enough timeout such that the probability of the RTT random variable exceeding
that threshold (also known as the tail probability) is really small.

One way to pick a high enough timeout with low tail probability is to estimate the mean (u) and the standard
deviation (o) of the RTT random variable distribution and set the timeout to u+ k.o, where k is some constant
that reflects how low we want the tail probability to be. For instance, if the RTT random variable is normally
distributed, then the probability that an random RTT sample is within one standard deviation (k = 1) is 68%,
two standard deviations (k = 2) is 95%, and three standard deviations (k = 3) is 99.7%. Correspondingly,
the tail probabilities are 32%, 5%, and 0.3%. Real RTTs are not normally distributed, but most probability
distributions share this property of the tail probability decreasing sharply with increasing k, even though they
don't decrease as sharply as the normal distributionﬂ

Hence, picking a small value of k is sufficient. TCP’'s own retransmission timer uses a k = 4, and we'll use
that for concreteness. Assuming we have some estimate of u and o, we can calculate the timeout as:

timeout <~ pu+4.0 (1)

4A more detailed analysis would take into account the fact that retransmitted packets need multiple round trips before the round
is completed, but wouldn't change the overall expression for throughput by too much.

5The formal result is called “Chebyshev's inequality.” It's not something you are expected to know for this course. All you
should remember is that the tail probability decreases rapidly with increasing k.

Page 3 Last updated: 2021/10/19 at 15:59:03

2.2 Online estimation of mean RTT 2 RETRANSMISSION TIMERS

2.2 Online estimation of mean RTT

Ideally, we would be able to estimate the mean RTT (u above) by collecting enough RTT samples offline and
fitting them to some distribution that captures the distribution of RTTs. Unfortunately, this estimate would be
rendered useless the instant network conditions changed, e.g., a new application starts sharing the same queue
as the Stop-And-Wait sender, which leads to an increase in queueing delays. Alternatively, a router outage
could result in a different path with a different RTT from the sender to the receiver.

The solution is to estimate the mean RTT in an online manner. Because the estimation is done online and
happens on every packet, this estimator has to use a very small number of computations. The estimator that
TCP uses is called an exponentially weighted moving average filter (EWMA). The EWMA is updated on every
new acknowledgement received at the sender as follows.

w+—(l—a)u+a.RTT (2)

The equation updates the RTT mean estimate, u, to a weighted combination of its previous estimate u
and the RTT sample obtained from the current acknowledgement. The weights used are (1 — &) and o for
the previous estimate and the current RTT sample respectively. The RTT sample is obtained by adding a new
packet header that carries the timestamp at which the sender transmitted the packet. This header is then
echoed back in the acknowledgement. When the acknowledgement is received back at the sender, the sender
subtracts the timestamp header from the current wall-clock time to determine the RTT. In TCP, this header
is called the TCP timestamp header field.

But what is the justification for this EWMA-based estimator? The EWMA can be recursively expanded
using the equation above to get the equation below:

b aRTT+a(l—a)RTT 1+a.(1-a)’RTT s +a.(1—a)>.RTT 3+... (3)

Here RTT is the RTT of the current acknowledgement, R7T T_1 is the RTT of the previous acknowledgement,
RTT_5 is the RTT of the acknowledgement from two samples ago, and so on. This estimator exponentially
decays the contribution of samples further back in the past (hence the name) and gives greater weight to more
recent samples, allowing it to more quickly react to changes in RTT caused by changing network conditions.

Further, the EWMA closely tracks the average of samples. For instance, if you start the EWMA from some
arbitrary initial value and present it with a set of RTT samples that all have the same constant value C, the
EWMA will quickly converge to the value C.

How quickly depends on the value of a. A large a weighs recent samples more aggressively, which allows it
to converge faster to the new value. But, it also means that it could react too soon to a transient change in
network conditions. On the other hand, a smaller a is more sluggish to react to changing conditions, but is more
robust against transient changes. TCP implementations on the Internet use an a of 0.125, which empirically
seems to balance these two concerns.

2.3 Online estimation of RTT standard deviation
Finally, we use a similar online EWMA for the standard deviation, o, as well.
0+ (1-08).c+B.IRTT — uj (4)

Here, the online version of ¢ is a linear combination of the previous standard deviation and the absolute
deviation (|[RTT — ul|), which is easier to calculate in an online manner than the standard deviation.

2.4 Handling lost retransmissions

It is possible that the retransmitted packet might again be deemed lost in the network, which might be a
symptom that the timeout estimates are much lower than the actual RTTs in the network. This can happen at
the very beginning, when the timeout estimates are set to some default value or when the network conditions
change drastically because of a large number of applications suddenly using the network.

Page 4 Last updated: 2021/10/19 at 15:59:03

A DIFFERENCE BETWEEN TCP ACKS AND OUR ACKS.

When this happens, the retransmission timer exponentially backs off. it repeatedly doubles its estimate of
the timeout until some retransmitted packet is acknowledged successfully. This allows the sender to restart
its u, o, and timeout calculations. Exponential back off is a good way to be extremely conservative when
conditions are unknown and we'll see it later in the course in the context of link-layer protocols.

A Difference between TCP acks and our acks.

There is one important difference in semantics between TCP acknowledgements and the Stop-And-Wait ac-
knowledgements as we have presented them here. A Stop-And-Wait receiver's acknowledgement with the
sequence number n indicates that the packet with sequence number n has been received. TCP’s acknowledge-
ments on the other hand are cumulative: a TCP acknowledgement with the sequence number n indicates that
all bytes with sequence number less than or equal to n have been received.

Page 5 Last updated: 2021/10/19 at 15:59:03

	Stop-And-Wait
	The problem
	The Stop-And-Wait protocol
	Throughput of the Stop-And-Wait protocol

	Retransmission timers
	Deciding when a packet has been lost
	Online estimation of mean RTT
	Online estimation of RTT standard deviation
	Handling lost retransmissions

	Difference between TCP acks and our acks.

