
Lecture 8: Intradomain routing

Anirudh Sivaraman

2020/10/05

Up until now, we have talked about the top two layers of the networking stack: the application and transport

layers. This week we’ll start with the routing layer. This is the part of the network that gets packets from one

end host of a network to another through a sequence of routers, called a path. The job of the routing layer

is to find such a path between any source host and any destination host (routing), and then to send packets

along this path (forwarding).

These two functions: routing and forwarding, correspond to the two planes that are present on every router.

The control plane handles routing and finds paths between any two hosts/routers in the network. The data

plane actually sends (or forwards) packets along these pre-computed paths when a new packet shows up at

a router. The interface between these two planes is the forwarding (or routing) table, which is essentially a

look-up table.1

Let’s look at the content of the look-up tables at a specific router. The keys in this look-up table are the

destination addresses of the hosts in the network. The values in this look-up table are the output ports of this

router on which a packet must be sent out so that the packet eventually finds its way to the destination. These

output ports correspond to the next hop along the path from the source to the destination. Figure 1 shows the

forwarding tables for four nodes connected in a straight line topology.

The control plane writes entries (destination addresses and next hops) into the forwarding tables, while the

data plane reads these entries by looking up the next hop for the destination address carried by the incoming

packet. These two planes operate at very different timescales. The control plane needs to update or rewrite the

forwarding tables every time the network’s topology changes—either because a new router joined the network

or an old one failed. The data plane, on the other hand, needs to read the forwarding tables on every incoming

packet at a router. The rate of topology changes is typically much lower than the packet rate at a router. For

instance, for a router that supports 1 Tbit/s of aggregate forwarding capacity, this translates into 1B packets/s,

assuming 1000 bit packets. That’s a packet every 1 ns in the data plane. Topology changes, on the other hand,

are relatively infrequent. Even in large networks (e.g., the ones inside a large company like Google, Microsoft,

or Facebook), topology changes happen at the rate of at most a 1000 times a second. That’s a change every

1 ms in the control plane. Hence the timescales differ by six orders of magnitude (1 ms vs. 1 ns).

As a result, the data and control planes are implemented very differently. Because the data plane operates

at such small time scales, it is built using dedicated hardware that is specialized for table lookups. This hardware

is called a switching chip or a switching ASIC (Application Specific Integrated Circuit). The control plane is

implemented using a general-purpose CPU like an Intel processor because that is sufficient for the rates required

by the control plane.

Keeping with this control and data plane dichotomy, our discussion of the routing layer will also be divided

into two parts. This week we’ll look at the control plane, and the week after the midterm, we’ll look at the

data plane. Let’s begin with the control plane. The job of the control plane is to compute the forwarding

tables shown in Figure 1 and write them into the router. The job of the control plane can be summarized by a

routing algorithm, which computes paths between any two hosts/routers within a network. We’ll now discuss

two specific routing algorithms.

1A look-up table is also known as a dictionary or hashmap or map or hash table.

1

2 LINK-STATE ROUTING ALGORITHMS

Dest Next
Hop

B B

C B

D B

Dest Next
Hop

A A

C C

D C

Dest Next
Hop

D D

B B

A B

Dest Next
Hop

C C

B C

A C

A B C D

Figure 1: Forwarding tables for a straight-line topology with 4 nodes.

1 Intradomian routing algorithms

In this lecture, we’ll be looking at routing algorithms within any one of the networks that constitute the Internet.

These networks are typically owned and operated by a single autonomous entity, who typically has complete

control over all devices within their network. Such networks are called domains (or) autonomous systems.2

We’ll use the term domain here consistently.

Because a single autonomous entity owns and operates the entire network, it is free to do as it pleases

when choosing among different alternative paths between a source and a destination host/router within its own

network. Typically, intradomain routing tries to minimize some kind of path metric, which in turn is (usually) the

sum of a link metric for every edge/link within a path. One reasonable choice for the link metric is the minimum

latency (i.e., the propagation delay, which excludes any queueing delays) along a network link; correspondingly,

the path metric is the minimum latency along a path.

There is a class of routing algorithms, termed dynamic routing algorithms, which incorporate the current

queueing delay at a link in their link metric. However, such algorithms are harder to reason about because their

performance depends on the extent to which queues build up, which in turn is a function of the number and

nature of applications using a network. We won’t be dealing with such algorithms in this course—both because

they are hard to reason about and because they are not widely deployed. Instead, we’ll concern ourselves with

static routing algorithms, which depend on static (or at least relatively less dynamic) properties of the network,

such as a link’s propagation delay or its capacity, or the network’s topology—in contrast to dynamic (or quickly

changing) properties such as queueing delay, queue size, or utilization of a link.

2 Link-state routing algorithms

The first class of intradomain routing algorithms we’ll discuss are called link-state algorithms. To build some

intuition for this, let’s assume you’re an omniscient network operator looking down into the network from above.

Because you’re omniscient, you know everything there’s to know about the network: its entire topology (i.e.,

who is connected to who), the link capacities on each of the links/edges, and the propagation delays on each

of the links. We’ll also assume you’re supplied with a formula to compute the link’s metrics from the link’s

properties such as its propagation delay and capacity. Finally, we’ll assume that the path metric is the sum of

2This is distinct from the use of the term domain in the context of the Domain Name System.

Page 2 Last updated: 2020/10/05 at 09:20:17

2.1 Link-state algorithms in more detail 3 DISTANCE VECTOR ALGORITHMS

the link metrics along the path, and you’re interested in minimizing the path metric.

How would you solve the routing problem assuming you’re the omniscient network operator? At its core,

this problem is no different from computing the shortest path on a graph, where you initialize the graph’s edges

with weights corresponding to the link metrics. Once you have done that, you need some way to compute the

shortest path between every pair of nodes in a graph. For this, you could use a standard shortest path algorithm

from CSCI-UA.0310 such as Dijkstra’s algorithm, the Bellman-Ford algorithm, or the Floyd-Warshall algorithm.

OK, now how do we perform routing in a network where you don’t have the benefit of omniscience, maybe

because the network is too large? In a typical network, there is no omniscient network operator. Instead, each

router can only see its own local neighborhood: who it is directly connected to (i.e., over a single link), what the

link capacities to each of its neighbors is, and what the propagation delay to each of its neighbors is. In a link-

state routing algorithm, routers cooperate with each other to exchange information about their neighborhoods

so that every router has an omniscient or global view of the network after this exchange. After this exchange,

every router has a global view of the network, and each router can independently run a shortest-path algorithm

like Dijkstra’s algorithm on this global view of the entwork.

In essence, link-state routing replaces the centralized shortest-path algorithm at a hypothetical omniscient

network operator with a distributed algorithm in a setting where no router has global visibility of the network

when it boots up. A distributed algorithm has the key benefit of scalability: the ability to gracefully handle large

problem sizes (in our case, large networks). As an aside, the centralized approach has seen a recent revival in

the form of software-defined networking (SDN). One popular instantiation of SDN involves using a centralized

controller, similar to our omniscient network operator. We’ll discuss SDN later in the course.

2.1 Link-state algorithms in more detail

Let’s discuss link-state algorithms in some detail. Each router first collects information about its local neighbor-

hood by sending probe packets out of all its output ports to see who it is connected to and what the properties

of the connecting link (propagation delay and capacity) are. This is the link state because it captures the current

state of the router’s links. The routers then exchange this link state information with each other. They do so

by ensuring that each router’s link state information is broadcasted to the entire network so that at the end of

the broadcast process, every router has every router’s (including itself) link-state information.

This broadcast works by having each router forward any link-state advertisements (LSA) (a packet containing

information about the neighborhood for a particular router) that it receives to its neighbors. These neighbors

then forward the LSAs to their neighbors, and so on, until the LSAs reach the edges of the network. Some care

must be taken to ensure that each LSA received at a router is forwarded to a neighbor of the router only once,

and we’ll look at this in the assignment. Without this, the LSAs can be perpetually forwarded in the network,

and the broadcast process will never stop.

Once the broadcast process has completed, each router has the LSA from every router (including itself).

These LSAs correspond to the adjacency list for each router in the network, and the combination of all these

LSAs gives us the adjacency list representation of the network’s graph. With this representation available, each

router can independently run a single-source shortest path algorithm, such as Dijkstra’s algorithm to calculate

shortest paths to every destination address from itself. The output of Dijkstra’s algorithm can be used to

determine the next hop along the shortest path to each destination. With this information, the router can fill

in its forwarding table with an entry for each destination.

3 Distance vector algorithms

An alternative to link-state algorithms is the class of distance-vector algorithms. In link-state algorithms, until

the broadcast process is completed, no router has computed routes or next hops to any destination. In other

words, the link-state algorithm sequences routing into two parts: an information gathering phase where every

router accumulates enough information to reconstruct the network’s graph and a route computation phase

where routers actually compute routes based on the graph that they have accumulated.

Page 3 Last updated: 2020/10/05 at 09:20:17

4 COMPARING LINK-STATE AND DISTANCE-VECTOR ALGORITHMS

The distance vector algorithm is more incremental in the sense that the information gathering phase and

route computation phases are interleaved without being sequenced one after the other. The consequence of

this is that as time progresses a router has computed the shortest paths for an expanding frontier of other

routers/end hosts around it. At the beginning of time, each router knows shortest paths (as measured by the

path metric) whose path lengths (as measured by the number of hops) are at most 1. As time progresses, each

router knows shortest paths with path lengths at most 2, at most 3, and so on. So, a router learns shortest

paths to nearby routers quickly and farther routers slowly.

How does the algorithm actually work? The principal idea underlying distance vector algorithms is this: a

router’s shortest path P to a destination D can be decomposed into an edge to one of the router’s neighbors

N concatenated with a shortest path P ′ to D from N. Why is this? We can provide a proof by contradiction.

If P consisted of a non-shortest path to D from a particular neighbor N, the non-shortest path portion of P

could be replaced with the neighbor N’s shortest path to D, yielding a shorter path to D in the process.3

Now, onto the algorithm itself. The algorithm is a distributed version of the Bellman-Ford algorithm.

Each router maintains its current estimate of the shortest path to the destination. Let’s call this d(v), where d

represents the router’s current estimate of the shortest distance (as measured by the path metric) to destination

v . This is called a distance vector because it is a vector of distances to each destination in the network. Whenever

the distance vector of a router changes, 4 the router exchanges the distance vector with its neighbors alone. In

particular, unlike link-state algorithms, it does not broadcast the distance vector to the entire network.

When a router receives a distance vector dN from one of its neighbors N, it incrementally updates its own

distance vector dR for every destination v , as follows:

dR(v) = min(dR(v), dN(v) + l ink metr icR,N) (1)

This follows from the earlier intuition: any shortest path can be broken up into an edge to a neighbor concate-

nated with a shortest path from the neighbor.

That’s it. That’s the entire algorithm. When do we stop this algorithm? The beautiful thing about the

algorithm is that it stops automatically because if the distance vector does not change, the router does not

send it out to its neighbors. We can prove that when the algorithm quiesces (i.e., there are no more distance

vectors flying around), the distance vectors would be at their correct values. These are the values computed by

a shortest-path algorithm such as Dijkstra’s algorithm.

So when does the algorithm automatically stop? This depends on the maximum length of a shortest path

in the network. This is because, as we remarked earlier, each router builds up an expanding frontier of routers

to which it knows shortest paths. Hence, the farthest router determines how long the algorithm takes to stop

(also called convergence time in the routing literature).

One detail we have omitted is how the best next hop to a destination is maintained at each router. In the

incremental update step, if a router chooses to update its shortest path to go through its neighbor, it updates

its next hop to that neighbor. Again, when the algorithm quiesces, we can prove that the next hop will be at

its correct value. A good illustration of the distance-vector algorithm, courtesy of Prof. Nick Feamster at the

University of Chicago, is available at https://www.youtube.com/watch?v=x9WIQbaVPzY.

4 Comparing link-state and distance-vector algorithms

One difference we have already alluded to: link-state separates out the information gathering and route compu-

tation phases, while distance-vector interleaves them. As a result, the distance-vector algorithm incrementally

builds up shortest paths as opposed to the link-state algorithm, which doesn’t have any valid shortest path

during the information gathering phase.

3This idea (of decomposing shortest paths into an edge to a neighbor followed by another shortest path) is at the core of the

correctness proof of Dijkstra’s algorithm, so reviewing material from CSCI-UA.0310 may be helpful.
4This includes the time at which the router just boots up and its distance vector is first initialized. A freshly initialized distance

vector at a router has the entry ∞ for any router that is not directly connected to the router and the link metric for any router

that is directly connected.

Page 4 Last updated: 2020/10/05 at 09:20:17

https://www.youtube.com/watch?v=x9WIQbaVPzY

5 WHAT WE HAVEN’T COVERED

Assuming the computational steps (running Dijkstra’s algorithm for link-state algorithms and performing the

incremental update in Equation 1 for distance-vector algorithms) in the two algorithms are instantaneous,5 the

decision between the two comes down to the size of the network.

For a network with a small number of nodes, the LSAs can be broadcast across the network quite quickly,

after which the route computation can be run quite quickly at each router. For a network with a larger number

of nodes, distance vector is preferable. This is because the broadcast step in link-state routing requires more

time to complete and link-state routing does not compute usable routes until the broadcast step is over. By

contrast, by interleaving route computation with information gathering, distance-vector routing makes shortest

paths available much earlier (e.g., after k rounds of distance-vector, every router knows shortest paths of path

length k).

Further, every change to the network requires us to rebroadcast LSAs for link-state routing. For distance

vector, the amount of network traffic generated in response to a change in the network is roughly proportional

to the change in the shortest paths that is induced by the network change.6

In summary, link-state algorithms are preferable in a small network because broadcast is cheap and quick.

Link-state algorithms are also simpler to reason about because they essentially emulate the workings of a

centralized algorithm and aren’t as distributed as distance-vector algorithms.

5 What we haven’t covered

This section provides a brief summary of what we have left out in the topic of routing. This won’t be tested

unless I end up covering it in detail later, but is nonetheless useful if you want to understand routing at the next

level of detail.

1. We don’t look at how we handle churn, i.e., router failures and router additions, for both the link-state

and distance-vector algorithms. All our discussions have been focused on what happens at the beginning

of time when the network just boots up. Dealing with churn is probably among the most painful parts of

routing as far as a network operator is concerned.

2. We have only looked at routing based on destination address, where the destination’s IP address detemines

the packet’s path through the network. There is a rich class of routing algorithms that deal with policy

routing, which goes beyond the destination address field in the packet header and uses other packet

headers to inform its routing decisions. For instance, a cloud provider may want to ensure that one

tenant’s traffic does not enter a particular part of the network that is being used by another tenant for

security reasons. It could make this decision based on the source IP address of the tenant.

3. Another issue that is important operationally is scaling to large networks. At some point the size of

the forwarding tables becomes a concern because high-speed memory (required for data-plane lookups)

is limited. The common solution to this problem is hierarchy. The separation of routing into intra and

interdomain routing (which we’ll discuss next lecture) is the simplest example of this. Routing protocols

also make use of the hierarchical structure of IP addresses themselves to significantly reduce the number

of forwarding table entries they need to store.

5The computation step just needs to be much faster than the time it takes to broadcast an LSA across the whole network or

send a distance vector to a router’s neighbor.
6This oversimplifies distance vector, which needs some important modifications to handle router failures. We won’t get into

failure handling in this course.

Page 5 Last updated: 2020/10/05 at 09:20:17

	Intradomian routing algorithms
	Link-state routing algorithms
	Link-state algorithms in more detail

	Distance vector algorithms
	Comparing link-state and distance-vector algorithms
	What we haven't covered

